Welcome to QuaCCS!

 

Working on Quantum Clocks and Complex Systems, our research is focused on the development of a new generation of optical frequency standards based on Coulomb crystals of trapped ions. With this approach, the short-term instability of ion-based clocks could be improved significantly beyond the present state-of-the-art, enabling practical applications such as chronometric levelling for geodesy. In our experiment, we aim to achieve a total relative frequency uncertainty of a few parts in 1019. Ion Coulomb crystals are a basis for precision spectroscopy in quantum-correlated systems and pave the way for tests of fundamental theories and the search of new physics beyond the Standard Model.

The excellent control that is possible over trapped and laser-cooled ions allows interesting experiments to be performed on the physics of atomic many-body systems. We study the nonlinear and non-equilibrium dynamics of complex systems and use ion Coulomb crystals for the emulation of physical systems that are otherwise difficult to access. This scientific research ranges from the observation of phase transitions and topological defects to nanofriction and transport dynamics in self-organized systems.