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Kai Christian Grensemanngeboren am 8. August 1997 in Norden, Deutschland

Wissenschaftliche Arbeit zur Erlangung des Grades
Master of Science (M.Sc.)am QUEST-Institut der Physikalisch-Technischen Bundesanstalt
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CHAPTER 1

Introduction

Local Lorentz invariance (LLI) is one of the three fundamental symmetries of Einstein’s equiv-
alence principle [1]. Together with the universality of free fall and local position invariance,
it builds the foundation for the general theory of relativity (GR) [2], one of the most suc-
cessful modern theories in physics. GR fully describes the fundamental force of gravitation at
macroscopic levels, however not satisfactory at the quantum level. Next to GR, the also highly
successful theory called the standard model of particle physics (SM) describes all three remain-
ing fundamental forces, the electromagnetic force, the weak and the strong force. One of the big
governing questions in modern physics is whether a comprehensive theory of everything can be
found, that unifies all four fundamental forces consistently. In an effort to accomplish this uni-
fication, it has been suggested that the violation of GR’s fundamental symmetries, in particular
Lorentz violation (LV), could take place at the quantum level [3, 4]. Therefore, experimental
searches for LV are an important aspect in searches for new physics.

A wide range of experiments at different energy scales and in different particle sectors have
been conducted in the past decades in search of LV, both on earth and via astrophysical obser-
vations [5]. Among them are modern Michelson-Morley analogues based on high-finesse optical
cavities [6, 7] and the evaluation of measured high-energy cosmic background radiation [8, 9].
Recent advancements in high precision spectroscopy of trapped ions have made these systems
an attractive platform for the search of low-energy LV in the combined electron-photon sector
[10, 11, 12]. The current most accurate LLI test in that sector has been performed by Dreissen
et al. [13], improving upper bounds for LV parameters to the 10-21 level. It used a scalable
method [14] based on radio frequency (rf) spectroscopy and dynamical decoupling (DD) in the
highly sensitive 2F7/2-manifold of a single 172Yb+-ion.

The goal of this thesis is the scaling of the LLI test by Dreissen et al. to a ten-ion Coulomb
crystal to improve the sensitivity to LV by a factor of

√
10. To achieve this, firstly a highly

robust DD sequence is identified with the help of numerical simulations. Secondly, the spatial
field gradients in the trapping region are measured spectroscopically and the magnetic field
gradient is minimized to an acceptable level. Finally, simultaneous efficient optical excitation of
six ions to the 2F7/2-manifold is shown within an eight ion Coulomb crystal, using a holographic
phaseplate to create a flat line-shaped laser beam profile. By solving a few remaining technical
limitations, the shaped laser profile could in the future be used for the simultaneous excitation
of ten ions at the right axial confinement for a sensitive LLI test.

This thesis is organized as follows. In Chapter 2, the theoretical framework for the LLI
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Chapter 1. Introduction

test is introduced and the Ramsey-type spectroscopy sequence is described. After establishing
optimal measurement parameters, an estimation of the achievable sensitivity with a ten-ion
crystal is performed. Finally, an overview of the experimental setup is given.

Chapter 3 contains the numerical study of different DD schemes, with the goal of finding
the most robust scheme against experimental rf pulse errors. After an introduction of the
numerical implementation and sequence modelling, an intuitive spin-echoed DD sequence and
several quantum information inspired sequences are compared. This is done visually on the Bloch
sphere and quantitatively in the form of stability diagrams. Finally, the numerical method is
validated by comparing stability diagrams with corresponding spectroscopic measurements in
the 2S1/2 ground state.

In Chapter 4, a measurement of the magnetic field and the rf transition driving field ho-
mogeneity is performed. Simultaneous Rabi spectroscopy of six ions in a 125 µm long Coulomb
crystal on the electric quadrupole transition is used to measure the B-field gradient. A reduction
of the B-field gradient to an acceptable level of less than 0.03 µG/µm is achieved by applying
a differential current between the two coils providing the quantization field. The rf field inho-
mogeneity is measured with simultaneous extended Rabi flops in the 2S1/2 manifold. Causing a
maximum π-pulse duration deviation of 0.7% over the crystal, it does not require any reduction.

Chapter 5 presents the experimental setup used for the efficient simultaneous excitation of
ions in Coulomb crystals from the 2S1/2 to the 2F7/2 state. A characterization of the shaped flat
line profile is first performed with a high resolution beam profiling camera. An approximately
80 µm long segment with intensity variations smaller than 2% and a section with high intensity
variations, likely caused by technical limitations of the setup, are observed. The flat section of
the beam profile is used to address an 80 µm long ion crystal, demonstrating efficient excitation
to the 2F7/2 state at the same transition frequency within ±1Hz in six out of eight ions.

Finally, Chapter 6 draws a conclusion of the acquired results and gives an outlook onto
further improvements to achieve the goal of a ten-ion LLI test.
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CHAPTER 2

Measurement scheme and experimental
setup

This chapter introduces the measurement method for the LLI test and the experimental setup.
First, the theoretical framework is introduced, in which LV is quantified and different LLI tests
are compared. Within this framework, the sensitivity of the Yb+-ion is compared to other
species. Then, the physical description of a trapped ion interacting with a resonant rf field is
given and the Ramsey-type spectroscopy sequence for the LLI measurement is explained. After
establishing optimal measurement parameters, an estimation of the achievable sensitivity with
a ten-ion crystal is performed. Finally, the most important components of the experimental
setup are reviewed, namely the linear rf Paul trap, the lasers and the coil for generation of the
resonant rf field.
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Chapter 2. Measurement scheme and experimental setup

2.1 Framework for spectroscopic tests of LLI

Local Lorentz invariance (LLI) is a fundamental assumption of the general theory of relativity,
stating that the outcome of an experiment does not depend on its angular orientation in space.
Testing this assumption in a quantum system requires a framework to quantify Lorentz violating
effects on atomic scales. As the standard model of particle physics excludes the possibility of
LV, a theoretical framework called the standard model extension (SME) [15] was developed. In
the SME, the Lorentz violating tensor cµν is added to the kinetic term of the SM Lagrangian.
After years of spectroscopic LLI tests in the electron-photon sector, no evidence of LV has been
found and thus the components of the cµν tensor are constrained to the achieved experimental
resolution [10, 11, 12, 13]. Because tensorial components depend on the reference frame, results
of different experiments are compared in a common frame, the Sun-Centered Celestial Equatorial
Frame (SCCEF).

All spectroscopic tests of LLI follow the same fundamental principal. In an apparatus located
on Earth’s surface, the energy difference ∆E between two differently oriented, ideally orthogonal,
atomic orbitals is monitored as Earth rotates around its axis with a frequency of ωE in the
SCCEF. This is schematically shown in Fig. 2.1 for the LLI test method of this thesis, where
∆E is the splitting of the Zeeman sublevels in the 2F7/2-manifold of the 172Yb+-ion. If LLI holds,
∆E should be equal for all orientations of the apparatus. However, a measured modulation of ∆E
with a frequency of ωE would indicate LV. The experiment can be understood as resembling the
Michelson-Morley interferometer used to measure the isotropy of the speed of light [16]. Instead
of the photon propagation along the different arms, the oriented momentum distributions of
atomic orbitals are used and Earth’s rotation replaces the rotating table.

Similarly to the Lorentz symmetry test using Earth’s rotation around its axis, local position
invariance could also be tested by monitoring ∆E as Earth orbits the sun with frequency ωO.
This would however require to perform the experiment for longer durations on the order of a
year and is not the goal of this thesis.

To realize differently oriented atomic orbitals in the experiment, two distinct methods have
been used. One method is the operation of two separate optical atomic clocks with differently
oriented quantization magnetic fields. This was accomplished by the authors of ref. [12], who
used two clocks operating on the 2S1/2 to 2F7/2 E3 transition in trapped 171Yb+-ions. The chal-
lenge of this method is the necessity to operate two clocks at high levels in fractional frequency
uncertainty. The second method is the use of a superposition of two orthogonal orbitals within
the same ion and measurement of the energy difference by means of a phase accumulation in
a Ramsey-type experiment. The challenge in the latter method is the necessity to suppress
magnetic field noise during the free evolution time. One way to achieve this is the use of en-
tanglement to create decoherence free states [10]. Another way was proposed in ref. [14], based
on dynamical decoupling with rf pulses. The latter was successfully used to test LLI in a single
172Yb+-ion in the same setup as used for this thesis, setting the current most stringent bounds
of cµν tensor components in the electron-photon sector at the 10-21-level [13]. This method only
requires one experimental setup and most systematic frequency shifts are common mode to the
differently oriented orbitals. In addition, it is readily scalable to multiple ions in a Coulomb
crystal.
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Chapter 2. Measurement scheme and experimental setup

Figure 2.1: Schematic representation of the LLI test method of ref. [13] and this thesis.Within the 2F7/2-manifold of the 172Yb+-ion, the quadratic sublevel splitting is monitored,while the orientation of the quantization B-field rotates with Earth in the Sun Centered Ce-lestial Equatorial Frame (SCCEF).

2.2 Yb+ as a candidate for tests of LLI

The Yb+ ion is an ideal system to test LLI. Its low lying 2F7/2 state is highly sensitive to LV
[14], has an extremely long radiative lifetime of 1.6 years [17] and can be coherently populated
on an optical transition [18]. This section explains how the sensitivity to LV is extracted from
the SME.

In the SME framework, LV causes small energy shifts to bound electronic states given by
the Hamiltonian [19, 20]

δH = −
(
C

(0)
0 − 2U

3c2
c00

)
p2

2
− 1

6
C

(2)
0 T

(2)
0 . (2.1)

C
(0)
0 , c00 and C

(2)
0 contain components of the cµν tensor. The first term in Eq. 2.1 is constant for

all substates |J,mJ⟩ of an electronic state. However, the second term contains the T
(2)
0 operator,

with the relativistic form T
(2)
0 = cγ0(γp− 3γzpz), where γ0 and γ are Dirac matrices. Its matrix

element is given by [14]〈
J,mJ

∣∣∣T (2)
0

∣∣∣J,mJ

〉
=

−J(J + 1) + 3m2
J√

(2J + 3)(J + 1)(2J + 1)J(2J − 1)
·
〈
J
∣∣∣∣∣∣T (2)

∣∣∣∣∣∣J〉 , (2.2)

where mJ is the projection of the total angular momentum J on the quantization axis. Thus,
the matrix element contains a term proportional to the product of m2

J and the reduced matrix
element

〈
J
∣∣|T (2)|

∣∣J〉, which results in a quadratic energy shift of the Zeeman sublevels of a
given electronic state. This energy shift can be used to search for LV in the LLI test method of
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Chapter 2. Measurement scheme and experimental setup

this thesis. In the theoretical description of the physical system given in the next section, the
quadratic shift will be considered in the form of the Hamiltonian

HLV(t) = κLV(t)J
2
z , (2.3)

where κLV(t) is the quadratic energy shift magnitude.
The most precise test of LLI can be achieved with a system in which small cµν components

cause large energy shifts. Equations 2.1 and 2.2 show that, for such a precise test, the difference
∆|mJ | between two states and the reduced matrix element should be as large as possible. In

Table 2.1, the reduced matrix elements and LV energy shifts, normalized by C
(2)
0 , are given for

the most promising ionic and atomic species [14]. Yb+ is an order of magnitude more sensitive to
LV than the previously used Ca+ [10], because both the reduced matrix element and the highest
possible ∆|mJ | are larger. The LLI test method used for this thesis utilizes a superposition of
all Zeeman substates in the 2F7/2 state and takes advantage of the highest possible ∆|mJ |.

Future LLI tests could benefit from even higher sensitivities to LV provided by a variety of

highly charged ions (HCIs). For example, U34+ has a state with a sensitivity of |∆E/(hC
(2)
0 )| =

3.0 × 1017Hz [14]. However, the proposed HCI states are not spectroscopically accessible at
present.

Ion/atom Level J
〈
J
∣∣|T (2)|

∣∣J〉 (a.u.) |∆E/(hC
(2)
0 )| (Hz)

Ca+ 3d 5/2 9.3 4.5× 1015

Yb+ 4f136s2 7/2 135 6.1× 1016

Tm 4f136s2 7/2 141 6.4× 1016

Yb 4f135d6s2 2 74 3.9× 1016

Table 2.1: Most sensitive singly charged ions and atoms to LV [14]. For each system thesensitive level with the respective total angular momentum J , the reduced matrix element ofthe T (2) operator and the normalized energy shift due to LV is given.

2.3 Measurement method using composite rf pulse spectroscopy

A big challenge in conducting the LLI test in 172Yb+ is the first order magnetic field sensitivity.
Ambient magnetic field noise in the lab introduces orders of magnitudes larger energy shifts
than LV might. In order to precisely measure the quadratic energy splitting of the Zeeman
sublevels in the 2F7/2 state, while mitigating noise from the ambient magnetic field, a Ramsey-
type spectroscopy sequence is used, where dynamical decoupling (DD) with radio frequency (rf)
π-pulses is implemented during the free evolution time. This method was theoretically proposed
by R. Shaniv et al. [14] and used for the single-ion LLI test by L.S. Dreissen et al. [13] with a
more robust DD scheme.

In this section, the physical system of a Zeeman sensitive state, interacting with a resonant
rf field is introduced. Building up on this, the Ramsey-type spectroscopy sequence is explained
and optimal measurement parameters are shown to achieve the most sensitive LV measurement
signal. The entire section closely follows the work of R. Shaniv et al. [14].
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Chapter 2. Measurement scheme and experimental setup

Physical system

First, a Zeeman sensitive state with a total angular momentum of J is considered. It interacts
with an applied magnetic quantization field B = Bzẑ via its magnetic moment µz. The total
free evolution Hamiltonian of this state is composed of a linear and a quadratic term according
to

Hfree = Hlin +Hquad. (2.4)

The linear part is given by

Hlin = µzBzJz, (2.5)

where Jz is the z-component of the angular momentum operator. It describes the linear Zeeman
shift of the energy eigenstates |J,mJ⟩ due to the magnetic field. The quadratic part, given by

Hquad = κ(t)J2
z , (2.6)

takes into account the electric quadrupole shift induced by the gradient of the trapping field and
a potential Lorentz violating (LV) signal. The quadratic shift magnitude

κ(t) = κQS + κLV(t) (2.7)

is composed of a constant contribution κQS from the electric quadrupole shift and a much
smaller potential contribution κLV(t) from LV, oscillating with Earth’s rotation frequency and
its harmonics. In the case of the 2S1/2 ground state, κ(t) is zero, because the atomic orbitals
are spherical.

When an rf driving field with frequency ωrf close to resonance ω0 = µzBz/ℏ with the transi-
tion between neighboring, to first order equally spaced, Zeeman states is applied, the evolution
of the system is given by the coupling Hamiltonian

Hcoup = Ω(t) cos(ωrf t+ ϕ) Jx (2.8)

with the multi-level Rabi frequency Ω and the rf phase ϕ. As the magnetic field at the ion
position, and thus the resonance ω0(t), can drift over time, a time-dependent rf detuning δ(t)
is considered such that ωrf = ω0(t) + δ(t). In total, and after applying the rotating wave
approximation, the Hamiltonian has the form

H = δ(t)Jz + κJ2
z +Ω(t)[Jx cos(ϕ)− Jy sin(ϕ)], (2.9)

where Jx and Jy denote the x- and y-component of the total angular momentum operator
respectively. During applied rf pulses, the Rabi frequency is assumed constant, Ω(t) = Ω0, and
much larger than δ and κ. Between rf pulses, Ω(t) = 0 is assumed.

Ramsey-type spectroscopy sequence

The Ramsey-type spectroscopy method with DD is used to measure the quadratic level splitting
strength κ, while mitigating magnetic field noise causing a detuning δ. Here, a specific DD
scheme with an intuitive rephasing method is assumed, which is also used in the theoretical
proposal [14]. Ch. 3 of this thesis contains a study of different DD schemes and concludes in
the use of a more complex scheme that improves the robustness against experimental rf pulse
errors.
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Chapter 2. Measurement scheme and experimental setup

At the beginning of the sequence, the ion is prepared in a specific Zeeman substate |J,mJ⟩.
In our experiment this is achieved by optically exciting the ion from the

∣∣2S1/2,mJ = −1/2
〉

state to the
∣∣2F7/2,mJ = −1/2

〉
state with a π-pulse on the electric octupole (E3) transition.

The evolution of the state throughout the entire rf sequence is shown in Fig. 2.2. A resonant
rf π/2-pulse of duration t = π/(2Ω) (1) is used to create a superposition between all substates
in the J-manifold. Its phase is defined as ϕ = 0. A first free evolution dark time of duration tw
follows, during which the detuning δ and κ cause a phase accumulation of the state along the
equator of the Bloch sphere (2). As typically κ ≪ δ, only the phase due to δ is shown in Fig.
2.2. Next, a π-pulse with ϕ = π/2 (3) is used to effectively translate the state backwards on
the equator. Another free evolution dark time follows, with duration 2tw (4). A second π-pulse
with ϕ = −π/2 (5) is used to again translate the state backwards on the equator, this time
rotating the state across the opposite hemisphere. After a final free evolution time of tw (6),
a detection π/2-pulse with ϕ = ϕd (7) projects the state onto the initial Zeeman substate. In
Fig. 2.2, ϕd = π was chosen. Later in this section it is shown that this phase results in the
highest measurement sensitivity. The retrieved population fraction | ⟨mJ |Ψfinal⟩ |2 indicates the
total phase accumulated during the sequence. In our experiment it is measured by deexciting
the ion back to the ground state with an E3 π-pulse and performing fluorescence detection on
the 2S1/2 to 2P1/2 dipole transition.

It can be shown mathematically, that the phase accumulation due to the quadratic level
splitting is coherently accumulated (not shown in Fig. 2.2), while the phase accumulation due
to the linear Zeeman shift is compensated by the rephasing π-pulses. The total free evolution
dark time TD can be extended by repeating the single DD cycle between steps (2) and (6) n
times.

Figure 2.2: Generalized Bloch sphere representation of the Ramsey-type spectroscopy se-quence with an intuitive spin-echoed DD scheme [14]. As the scheme is applied in the eight-level 2F7/2 manifold, the quantum mechanical state cannot be represented on a true Blochsphere. An interpretation of the generalized Bloch sphere representation is given in Sec. 3.2.
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Chapter 2. Measurement scheme and experimental setup

Optimal measurement parameters

The experimentally tunable parameters for conducting the LLI test are the phase ϕd of the last
π/2-pulse, the magnitude of κQS and the total dark time TD after which the retrieved fractional
population is monitored. All these parameters need to be chosen to minimize the measurement
uncertainty ∆κ. The total evolution of the state during the spectroscopy sequence, independent
of the chosen DD scheme, is described by the operator

U(κTD, ϕd) = exp
(π
2
(Jx cos(ϕd)− Jy sin(ϕd))

)
· exp

(
iκTDJ

2
z

)
exp

(π
2
Jx

)
, (2.10)

which is derived in ref. [14]. For an initial state of |mJ = −1/2⟩, the retrieved population
fraction Pret(κTD, ϕd) = |⟨mJ |U(κTD, ϕ)|mJ⟩|2 is plotted in Fig. 2.3 (a) for a range of ϕd and
κTD. The measurement outcome is 2π-periodic in ϕd and π-periodic in κTD. The most sensitive
measurement of κ is performed at the point in the plot, where |dPret/dκ| is largest. This point
lies along the orange arrow in the figure, corresponding to ϕd = π. At this fixed phase, Fig. 2.3
(b) shows the signal Pret over κTD. The highest slope is found at the point on the central fringe,
where Pret = 0.5.

The magnitude of κ, with the dominant contribution κQS can be tuned by adjusting the axial
confinement in the linear Paul trap, changing the electric field gradient and thus the electric
quadrupole shift. To be sensitive to the smallest ∆κLV, κQS should be reduced to as small as
possible, while the increased TD stays within the experimentally achievable coherence time.

Figure 2.3: Retrieved population fraction Pret at the end of the spectroscopy sequence fordifferent measurement parameters. (a) shows Pret for a variation of both κTD and ϕd. (b)shows the Ramsey fringe at a fixed final pulse phase ϕd = π, indication the operation pointfor the LLI test.

2.4 Sensitivity estimation for a multi-ion measurement

A potential LV signal would be measured as a modulation of κLV(t) with Earth’s rotation
frequency or its harmonics on top of the constant κQS. The inaccuracy of the measurement
of κ is given as the standard deviation ∆κ. It is related to the slope of the curve Pret(κTD)
and the quantum projection noise at the operation point. In this section, ∆κ is discussed for a
measurement with a single ion and for the targeted measurement with 10 ions, considering the
different quadrupole shifts along the crystal.
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Chapter 2. Measurement scheme and experimental setup

Single ion sensitivity

The following derivation follows ref. [14]. The outcome of the Ramsey experiment after n
repetitions is Y = 1

n

∑n
i=1 xi with xi ∈ {0, 1}. The smallest measurable resolution ∆κ is then

given by

∆κ =

(
dE[Y ]

dκ

)−1√
V [E[Y ]] (2.11)

with the expectation value E[Y ] and variance V [E[Y ]]. The expectation value of Y is the
population retrieval probability Pret(χop) at the operation point χop = κTD. The variance is
assumed to be given by quantum projection noise. In total, this leads to

∆κ(χop) =

√
Pret(χop) (1− Pret(χop))
√
τTD · d

dχPret(χ)
∣∣∣
χ=χop

, (2.12)

where τ = nTD is the total measurement time. For the case of the Yb+-ion, an initial state of
|mJ = −1/2⟩, an optimal final rf phase ϕd = π and the optimal operation point χop = 0.15 rad,
Eq. 2.12 can be simplified to ∆κ = 0.1 (rad/

√
τTD).

Sensitivity of a ten ion crystal

Conceptually, it is equivalent to perform the Ramsey experiment ten times with a single ion and
once with ten uncorrelated ions. Therefore, ref. [14] gives the sensitivity ∆κ = 0.1(rad/

√
NτTD)

for a measurement with N Yb+-ions at optimal parameters. However, the simple
√
N -scaling

neglects that ions in a linear crystal are exposed to different electric field gradients, leading to
different quadrupole shifts. As a result, the ions do not contribute identically to the measurement
sensitivity. In the following, the reduced sensitivity due to this effect is calculated for a ten ion
crystal at the same axial secular frequency of νax = 266 kHz as used for the single ion LLI test
[13].

For each ion i in the crystal, the individual κi at νax = 266 kHz is calculated in Appendix A.1,
taking into account the electric field gradients from the trapping field and the other ions. The
results are

(κi) = (0.148, 0.174, 0.194, 0.207, 0.214, 0.214, 0.207, 0.194, 0.174, 0.148) radHz, (2.13)

where κ = 0.13 radHz was measured for the single ion LLI test. The resulting measurement
signal Pret,i(TD) for all ions is shown in Fig. 2.4 (a) according to Eq. 2.10. It is apparent that the
highest slope dPret,i/dκ occurs at different dark times for outer and inner ions of the crystal. The
total measurement sensitivity is obtained by using Eq. 2.11 and taking the sum of all Pret,i(TD)
as the expectation value E, as well as the sum of all quantum projection noises for the variance
V . This results in

∆κ(TD) =

√∑N
i=1 Pret,i(TD) (1− Pret,i(TD))√

τ
TD

· d
dκ

∑N
i=1 Pret,i(TD)

. (2.14)

Using the κi from Eq. 2.13, the total sensitivity ∆κ(TD) is displayed in Fig. 2.4 (b) as the solid
blue line. In comparison, the simple

√
N -scaling for ten ions is displayed as a black dashed line

and the sensitivity for a measurement with a single ion as a grey dotted line. At the optimal
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Chapter 2. Measurement scheme and experimental setup

dark time of TD = 1.13 s a sensitivity of ∆κ = 0.045 rad
√
Hz/

√
τ is achieved. This is a factor of

2.2 times more sensitive than the single ion measurement at TD = 1.13 s, instead of
√
10 ≈ 3.16

times more sensitive. It should be noted that the factor of 2.2 only applies to a measurement at
νax = 266 kHz. At higher axial secular frequencies, and thus closer ion spacing, the improvement
factor in respect to a single ion measurement decreases, because the electric field gradient varies
more from ion to ion.

Figure 2.4: Sensitivity ∆κ of an LLI test using a ten ion crystal and an axial secular frequencyof νax = 266 kHz. (a) Shows the calculated retrieved population fractions for the differentions. The calculation of the used quadrupole shifts can be found in Appendix A.1. (b) shows
∆κ as given in Eq. 2.14 for a varied dark time as a solid blue line. For comparison, thesensitivity of a single ion measurement and a √

10-improvement are shown as a dotted greyand dashed black line respectively.

2.5 Experimental setup

In the following, the setup for the experimental work of this thesis is described. The most
important components of this setup include the ion trap, the lasers used for driving optical
transitions and the coil that supplies the resonant rf field to drive transitions between Zeeman
sublevels. All of these components have been built up and characterized prior to this thesis.
The adjustments made during the work of this thesis are discussed in chapters 4 and 5.

Ion trap

The ions are trapped in a segmented linear rf-Paul trap. Detailed information about the design
and characterization of the trap can be found in Refs. [21, 22]. The radial confinement is achieved
with an rf quadrupole field supplied by a resonant circuit with a frequency of 24.38MHz. In
the axial direction eight segments are separated by DC electrodes, of which seven have a length
of 1mm and one a length of 2mm. In continuation of preexisting beam alignment, the long
segment was used for all experiments performed in this work.

Yb+-ions are loaded into the trap by optical ablation of an Yb target and a subsequent
isotope selective photo-ionization. The target contains a natural abundance of Yb, allowing to
trap all stable isotopes in the setup. For historic reasons, the 172Yb isotope was used for all
experiments of this thesis.

13



Chapter 2. Measurement scheme and experimental setup

Lasers

For the preparation, coherent manipulation and readout of electronic states, a range of optical
transitions need to be addressed. Fig. 2.5 shows a reduced level scheme of the 172Yb+ ion with
the available laser driven transitions represented by the solid colored lines and natural decay
channels by dashed gray lines.

The dipole allowed transition from 2S1/2 to 2P1/2 is driven with a frequency-doubled diode
laser near 370 nm. It is used for Doppler cooling of the ions, florescence detection and optical
pumping to a desired Zeeman sublevel of the ground state. The light is delivered to the ions
from three different directions H1, H2 and V so that all motional modes can be cooled efficiently.
For optical pumping into either of the mJ = ±1/2 sublevels, σ±-polarized light is applied in the
H2 direction in parallel to the orientation of the quantization magnetic field. As the ions can
decay from the excited 2P1/2 state to the metastable 2D3/2 state, a repumper laser near 935nm
is used to close the transition cycle.

The electric quadrupole (E2) transition from 2S1/2 to
2D5/2 near 411 nm is used in this thesis

to accurately measure the magnetic field gradient along ion Coulomb crystals. It is driven by
a frequency-doubled diode laser, stabilized to a ULE cavity [23]. Optionally, the laser can be
locked to a Silicon cavity in Paschen-Bau via a transfer lock. Repumper lasers near 1650 nm,
636 nm and 935 nm are used to transfer the population back to the ground state after 411 nm
light is applied in a sequence.

Finally, the highly forbidden electric octupole (E3) transition from 2S1/2 to
2F7/2 near 467 nm

is used to efficiently populate and depopulate the 2F7/2 state at the beginning and end of the LLI
test sequence. This transition is extremely narrow with a natural linewidth in the nHz range and
difficult to coherently address in a Zeeman sensitive even isotope. For a coherent manipulation
on this transition, suppressed ambient magnetic field noise and a narrow, highly stable laser are
required [18]. In the setup, an active magnetic field stabilization is implemented in the form of
a feedback loop [24] supplying a signal from a magnetic field sensor near the trapping region to
three pairs of magnetic field coils oriented in orthogonal directions. The transition driving laser
is derived from the fundamental 934 nm laser of the single 171Yb+-ion clock [25] operated by
department 4.4 at PTB. A light fraction of the laser locked to the E3 transition of the clock ion
is sent from Kopfermann-Bau to Giebe-Bau via a telecommunication fiber. It is first amplified
with a laser diode, then the isotope shift close to 4.7GHz is bridged with a high frequency AOM.
Details on this setup can be found in Ref. [26].

After bridging the isotope shift, two separate light paths for single and multi ion addressing
are available. The original single ion addressing path uses a second laser diode amplification
stage and waveguide second harmonic generation (SHG) to achieve ≈ 12mW of 467 nm light
focused to a Gaussian spot with dimensions wx = 26 µm and wy = 38nm at the ion. An intensity
stabilization is implemented with an AOM operating at 200MHz and frequency scanning with
a double-pass 110MHz AOM, both supplied by a direct digital synthesizer (DDS) [18, 26].

The newer multi-ion addressing path uses a commercial system1 of fiber coupled tapered
amplifier and SHG cavity. During the experimental work of this thesis a maximum 467 nm power
of 210mW was measured after the output fiber of the SHG cavity. A copy of the single ion
addressing intensity stabilization and frequency scanning setup was built up during this work.
At the end of this setup a maximum power of 91mW was observed. After the transmission
through a mode-cleaning optical fiber and a beam shaping holographic phaseplate, a final power
of 36mW entering the experimental chamber was achieved.

1supplied by Toptica
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Chapter 2. Measurement scheme and experimental setup

Figure 2.5: Energy level diagram of the 172Yb+ ion [27]. The available laser transitions aremarked as solid colored lines and natural decay channels as gray dashed lines.
Transition driving rf field

The rf field is supplied by a coil placed outside of the vacuum chamber. It consists of 27 turns
wound at a diameter of 4.5 cm and has a distance of 5.5 cm to the ions. The coil has a measured
resonance frequency of ωrf/2π = 3.5147MHz [26] and is powered by a DDS referenced to a
hydrogen maser. By adjusting the strength of the quantization magnetic field, the Zeeman
splitting in the 2S1/2 or the 2F7/2 state can be brought close to resonance with ωrf . A fine
adjustment of ωrf is then performed by tuning the DDS frequency to achieve the resonance. In
the 2F7/2 state a multi-level Rabi frequency of roughly Ω = 33 kHz is achieved.
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CHAPTER 3

Improvement of dynamical decoupling

This chapter presents the numerical and experimental study of different dynamical decoupling
(DD) rf pulse sequences, with the goal of finding a highly robust sequence against experimental
pulse imperfections. The experiment especially suffers from ambient magnetic field drifts, which
induce a detuning δ between the fixed rf driving frequency and the drifting atomic resonance,
and from drifts in the rf power provided by the macroscopic coil, which cause pulse duration
errors ∆t. The proposed spin-echoed DD sequence [28] lead to a limited coherence time on
the order of a few milli seconds during the Ramsey dark time of our LLI test. Only after an
implementation of the highly robust UR10 sequence [29], the coherence time was extended to
seconds [13], enabling a sensitive LLI test.

In the beginning of this chapter, the numerical implementation of the physical system of
Sec. 2.3 is introduced. It is used to show the more complex dynamics of coherent manipulation
in an eight-level system compared to the well known dynamics in a two-level system, making
operations in the eight-level system more susceptible to fidelity loss from rf pulse imperfections.

After an introduction to the numeric modelling method for entire composite pulse sequences,
the DD schemes under test are introduced and visualized on the generalized Bloch sphere. Fol-
lowing that, the robustness against the rf pulse induced errors δ and ∆t is evaluated quantita-
tively in the form of stability diagrams.

Finally, the numerical methods are validated experimentally with a comparison of simulated
stability diagrams to measurements in the 2S1/2 manifold.
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Chapter 3. Improvement of dynamical decoupling

3.1 Numerical model

In order to numerically study the composite pulse sequences for dynamical decoupling (DD),
the atomic system and its interaction with the applied radio frequency (rf) field is described
in the full quantum picture, using the Hamiltonian given in Eq. 2.9. This description allows
to simulate the rf sequence in the 172Yb+-ion’s 2F7/2 state for a test of LLI, as well as in the
2S1/2 ground state for experimental verification of the simulation. Here, the explicit numerical
implementation of the used operators and the calculation of the time evolution are shown.

Numerical implementation

All calculations and simulations presented in this chapter are performed in Python. The quan-
tum mechanical state in a J-manifold is represented by an array

Ψ = (α−J , α−J+1, ..., αJ), (3.1)

containing the complex amplitudes of the energy eigenstates

αmJ = ⟨J,mJ |Ψ⟩ . (3.2)

In this basis, the matrix representation of the spin operators Jx, Jy and Jz takes the form of
the well known Pauli spin matrices for the two-level system of the 2S1/2 ground state. In the
eight-level system these operators are represented by the following 8×8-matrices

Jx =


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15
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2 0
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3 0

0 0 0 0 0
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3 0
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7
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0 0 0 0 0 0
√
7
2 0
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(3.3a)

Jy =
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(3.3b)

Jz =


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0 5
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2


. (3.3c)
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Chapter 3. Improvement of dynamical decoupling

The derivation of these matrices can be found in Appendix A.2. Using the spin matrices, Eq.
2.9 can be used to calculate the total Hamiltonian in matrix form.

Time dynamics

For the modeling of composite rf pulse sequences it is assumed that the total Hamiltonian is
constant for the duration of a single rf pulse or free evolution time of 100 µs. The evolution of
an initial state |Ψ(t0)⟩, subjected to a constant Hamiltonian H(t0) for a duration of t, is given
by

|Ψ(t0 + t)⟩ = U(t0, t) |Ψ(t0)⟩ = exp(−iℏtH(t0)) |Ψ(t0)⟩ . (3.4)

Consequently, the entire evolution of the atomic state during an experiment can be calculated
by applying a series of evolution operators U , each containing fixed values of δ, κ, Ω and ϕ for
the respective Hamiltonian. The necessary operator exponential

exp(X) =
∞∑
i=0

1

k!
Xk (3.5)

for an n×n-matrix X is computed using the linalg.expm method provided by the Python module
SciPy, which uses the approximation algorithm presented in Ref. [30].

3.2 Dynamics of the 2F7/2-manifold eight-level system

Using the introduced numerical implementation, the dynamics of the Zeeman substates in the
eight-level 2F7/2-manifold interacting with the rf field are simulated. They show key differences
to the dynamics of a two-level system, in particular narrower spectral resonance features and
narrower features in the time evolution. These properties reduce the allowed error margin for rf
pulses in respect to rf detuning and pulse duration.

Simulated rf spectrum

Figure 3.1 compares the simulated spectra of a two-level system in (a) and an eight-level system
in (b). Both spectra are calculated by assuming an initial state of |mJ = −1/2⟩ and applying
an evolution operator U(t = tπ) corresponding to an rf π-pulse of duration tπ = π/Ω. The
population of each substate | ⟨mJ |Ψ⟩ |2 after the interaction is shown for a varied rf detuning δ.

The result for the two-level system in (a) shows the central resonance feature of the well
known Rabi spectrum. In the case of the eight-level system in (b) the central resonance is much
more narrow in respect to Ω. Whereas a small detuning of δ/Ω = 0.3 only reduces the final
population of the |mJ = 1/2⟩ to ≈ 90% for the two-level system, the same detuning causes a
population reduction to zero in the eight-level system.
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Chapter 3. Improvement of dynamical decoupling

Figure 3.1: Simulated rf spectra for a two-level system (a) and an eight-level system (b),displaying the narrower resonance feature of the latter. For both spectra an initial state of
|mJ = −1/2⟩ and a pulse duration of tπ = π/Ω are assumed. The final population of eachstate is shown for a varied rf detuning δ.

Simulated time evolution

Figure 3.2 shows the time evolution of a two-level system in (a) and an eight-level system in
(b) during the interaction with a resonant rf field (δ = 0). For both systems, the initial state
is again assumed to be |mJ = −1/2⟩ and the final population of all states is shown for a varied
interaction time t scaled to the π-pulse duration tπ = π/Ω. The two-level system exhibits the
well known sine-shaped population transfer between the two states, known as Rabi flops. The
eight-level system, on the other hand, shows a more complex time evolution as the population
spreads over all states of the manifold before it interferes constructively in the |mJ = 1/2⟩ state
after the π-pulse duration. Again, the time evolution feature corresponding to a high final
population of the |mJ = 1/2⟩ state around t = tπ is much narrower than in the two-level case.

For two-level systems, the Bloch sphere is often used to visually represent the time evolution
of the full quantum mechanical state during a composite pulse spectroscopy sequence. Although
in general the Bloch sphere can only display enough degrees of freedom for a state in a two level
system, it is used as a visualization tool for pulse sequences in the eight-level 2F7/2 manifold
throughout this thesis. This choice is motivated by the overall similar time evolution of both
systems, when the eight-level system is initially prepared in one of the |mJ = ±1/2⟩ states.
The two poles of the “generalized” Bloch sphere are the |mJ = ±1/2⟩ substates and a π/2-
pulse transfers the state from a pole the equator, where the state is in a superposition of all
levels. The highly LV-sensitive levels |mJ = ±7/2⟩ have the largest amplitude in equator states,
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Chapter 3. Improvement of dynamical decoupling

making them ideal probe states during the dark evolution time of the Ramsey-type spectroscopy
sequence for the LLI test.

Figure 3.2: Simulated time evolution of a two-level system (a) and an eight-level systeminteracting with a resonant rf field (δ = 0). For both systems an initial state of |mJ = −1/2⟩is assumed and the final population of all levels is shown after a varied interaction time tscaled to the π-pulse duration tπ = π/Ω.

3.3 Modelling Ramsey-type experiments with dynamical decoupling

For modelling of the Ramsey-type experiment used to test LLI, a series of rf pulses and free
evolution dark-times are applied. All rf sequences investigated in this chapter follow the same
basic structure, ordering and labelling of pulses.

Figure 3.3 shows a schematic of the order in which the rf pulses and dark times are applied
to the ion. The sequence always begins with a π/2-pulse with phase ϕ = 0 to create a coherent
superposition of Zeeman states within the corresponding J-manifold. After the initial pulse, the
state evolves freely for the duration of the Ramsey dark time TD until the final π/2-detection
pulse with ϕ = π is applied to measure the phase that has accumulated. The evolution oper-
ators for these two pulses are denoted as Uπ/2, 0 and Uπ/2, π respectively, where the first index
corresponds to the pulse duration and the second index to the phase.

During the Ramsey dark time, dynamical decoupling (DD) schemes are used to counteract
the dephasing caused by the linear Zeeman shift, while maintaining the phase accumulated due
to the quadratic shifts. Several different DD methods are studied in this thesis. All these are
composite pulse schemes, where a single modulation sequence consists of n rephasing π-pulses
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Chapter 3. Improvement of dynamical decoupling

with different phases ϕi, that are separated by dark times of duration 2tw. The π-pulse evolution
operators are denoted as Uπ, ϕi

and tw-duration dark time operators as Utw . A single modulation
sequence of a specific scheme is repeated Nrep-times, until the desired total dark time is reached
as the sum of the individual dark times. In total, the final state |Ψfinal⟩ is calculated as

|Ψfinal⟩ = Uπ/2, π

1∏
j=Nrep

1∏
i=n

(Utw Uπ, ϕi
Utw)j Uπ/2, 0 |Ψ0⟩ , (3.6)

for a composite DD scheme with phases (ϕ1, ..., ϕn). As the operators have to be applied from
the left, the indices of the products run in reverse from Nrep/n to 1. The total Ramsey dark
time for this experiment is

TD = Nrep · n · 2tw. (3.7)

Figure 3.3: Schematic of Ramsey-type experiments with a composite pulse scheme for dy-namical decoupling. The top row shows a Bloch sphere representation with a single exem-plary rephasing pulse. The middle row shows rf-pulses of length tπ/2 or tπ and with phases
ϕ relative to the initial pulse as shaded rectangles.

Fidelity of a composite pulse sequence

So far, the order, timing and phases of the rf pulses were discussed for an ideal case. In addition
to that, the modelling method can also be used to simulate experimental imperfections, such
as rf detunings or pulse duration errors. For the case of a constant detuning, the Hamiltonians
used to calculate all evolution operators have to be constructed with δ ̸= 0. Similarly, constant
pulse duration errors can be simulated by changing the duration of all π-pulses to t = π/Ω+∆t.
By introducing these types of pulse errors in the simulation of the experiment, the robustness
of the experimental outcome against pulse imperfections can be characterized.

To quantify the robustness, the quantum mechanical fidelity (F) is used. The fidelity of
an experimental outcome |Ψfinal⟩ is, essentially, the squared overlap with an ideal outcome
| ⟨Ψideal|Ψfinal⟩ |2. In the case of the presented Ramsey experiment the ideal outcome would be
reached, if δ = 0 and ∆t = 0 throughout the duration of the full rf sequence. Therefore, the
fidelity of a pulse sequence with a constant detuning δ and a constant pulse duration error for
all π-pulses can be written as

F(δ, ∆t) = | ⟨Ψ0| U†
total(0, 0)Utotal(δ, ∆t) |Ψ0⟩ |2, (3.8)

where Utotal(δ,∆t) is the product of all operators in Eq. 3.6.
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3.4 Introduction of the studied sequences

In this thesis, a selection of four DD sequences is studied to find the best candidate for the LLI
experiment. The first scheme is a generalized spin-echo sequence (GSE) for large spins, proposed
by R. Shaniv et al. for the LLI test [14]. The spin-echo sequence has its origin in nuclear magnetic
resonance [31] and has since also been successfully applied to precision spectroscopy of atomic
transitions [28]. It consists of two π-pulses with phases given in Table 3.1. In the next section,
its rephasing method will be explained intuitively on the Bloch sphere. Unfortunately, the GSE
method fails when the rf-pulses contain detunings and pulse duration errors simultaneously,
especially in the eight-level 2F7/2-manifold with its narrow resonance features.

A more robust composite pulse method was introduced by G. Genov et al. in the context
of quantum information processing [29], named universally robust (URX) sequences. These
sequences with even numbers of pulses X contain theoretically optimized phases to compensate
arbitrary pulse imperfections of increasing order with an increasing number of pulses. Here,
the UR4, UR10 and UR16 sequences, with phases given in Table 3.1, are studied. The UR4
sequence will be compared to the similar GSE sequence to demonstrate the UR advantage.
Following that, the UR10 and UR16 sequences will be studied numerically under aspects of
robustness and suitability for the LLI test. The UR10 sequence was successfully used for the
published single-ion LLI test [13], while the UR16 sequence is studied to quantify a potential
robustness improvement for the planned multi-ion LLI test.

Sequence name Rf phases ϕi in one DD cycle Reference

Generalized spin echo (GSE) (1, -1)π/2 [14]

UR4 (0, 1, 1, 0)π [29]

UR10 (0, 4, 2, 4, 0, 0, 4, 2, 4, 0)π/5 [29]

UR16 (0, 1, 3, 6, 2, 7, 5, 4, 4, 5, 7, 2, 6, 3, 1, 0)π/4 [29]

Table 3.1: Phases of rf π-pulses for dynamical decoupling sequences studied in this thesis. Itis to be noted that, although the same five phases are repeated twice in the UR10 sequence,only an application of all ten pulses yields a high fidelity.
GSE and UR4 schemes on the Bloch sphere

In this section, the state evolution during each of the studied sequences is shown in a Bloch
sphere representation. The rephasing mechanisms are shown and, in the case of the GSE se-
quence, the strong fidelity loss with rf pulse errors is demonstrated intuitively. All Bloch sphere
representations in this section were calculated with the numerical model introduced in the be-
ginning of the chapter, applied to a two-level system. A Rabi frequency of Ω/2π = 33 kHz and
dark time of tw = 100 µs were assumed as realistic lab values. To obtain sub-pulse-duration
resolution, the evolution operators in Eq. 3.4 were computed for short durations of tπ/30 and
tw/12 for rf-pulses and dark times respectively. The states were plotted on the Bloch sphere
using the QuTiP -package for Python.

The GSE sequence is composed of two π-pulses that rephase atomic states as they drift along
the equator, due to linear energy shifts. Fig. 3.4 (a) shows a representation of this mechanism.
An initial 50/50-superposition of ground and excited state with a fixed phase (1) drifts along the
equator of the sphere due to an assumed detuning of δ/Ω = 3% throughout the sequence (2).
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With the two π-pulses (3) and (5), the state is effectively translated backwards on the equator
of the sphere via a rotation around the x-axis, so that the detuning-induced drift during the
following dark-times rephases the state back into its initial condition (4) and (6). In summary,
the mechanism works well as long as the detuning changes slowly compared to the duration of
the sequence and the π-pulse duration errors are close to zero.

An example for the effect of significantly large pulse errors on the fidelity of the GSE sequence
is given in Fig. 3.4 (b). While the same detuning of δ/Ω = 3% is assumed, the two pulses are
now slightly too short (∆t/tπ = −3%). As a result, the state drifts away from the equator and
towards the poles of the sphere. A successive application of only a few cycles of the GSE sequence
would completely destroy the fidelity of a Ramsey experiment. This makes the GSE sequence
unfeasible for the LLI test, where thousands of pulses are applied and small errors accumulate
quickly. In particular, pulse operations in the eight-level system of the 2F7/2-manifold are highly
sensitive to pulse duration errors, as was shown in Fig. 3.2. A quantitative characterization of
the low tolerances in pulse quality for a successful implementation of the GSE sequence in the
LLI test is performed in the next section.

Figure 3.4: Bloch sphere representation of the GSE sequence in a two-level system with twodifferent pulse qualities. (a) shows the evolution of the state throughout the sequence witha detuning of δ/Ω = 3% and no pulse duration error. (b) shows the sequence with identicaldetuning, but with a pulse duration error of ∆t/tπ = −3%.
While the GSE sequence can only compensate one pulse error type (detuning or duration) at

a time, the UR sequences are capable of compensating both types to high degrees simultaneously.
In the case of the short UR4 sequence, the compensation mechanisms can both be observed in
the Bloch sphere representation shown in Fig. 3.5. The same pulse imperfections of δ/Ω = 3%
and ∆t/tπ = −3% as for the GSE example were assumed. For a clearer visualization, the
sequence is split into two images (a) and (b). In order to visually compare the UR4 sequence
more closely to the GSE sequece, a common phase of π/2 was added to all four pulses. The
resulting pulses with phases (1,−1,−1, 1)π/2 only differ in their ordering from two cycles of the
GSE sequence. However, this reordering allows the state to shift back towards the equator at
the end of the sequence and a high fidelity is reached despite the pulse imperfections.
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Figure 3.5: Bloch sphere representation of the UR4 sequence in a two-level system with adetuning of δ/Ω = 3% and a pulse duration error of ∆t/tπ = 3% for all pulses. The sequenceis split into (a) and (b) for clearer visualization.
UR10 scheme

While the rephasing mechanisms of the GSE and UR4 sequences can be understood in an
intuitive way on the Bloch sphere, the longer URX sequences are too complex for this. Fig. 3.6
shows the state evolution for the UR10 sequence with no pulse errors in (a) and δ/Ω = 0.5%,
∆t/tπ = 2% in (b).

Figure 3.6: Bloch sphere representation of the UR10 sequence in a two-level system with norf pulse errors in (a) and δ/Ω = 0.5% as well as ∆t/tπ = 2% in (b). In both cases the initialand final states overlap exactly.

3.5 Numerical robustness analysis

Method

In this thesis, the robustness of a DD scheme refers to its ability to maintain atomic coherence
throughout the Ramsey dark time despite rf-pulse errors, namely the detuning δ and duration
error ∆t. A high robustness is characterized by a high fidelity F(δ,∆t), which is defined in Eq.
3.8. In order to compare the overall robustness of different schemes, the fidelity of an entire

25



Chapter 3. Improvement of dynamical decoupling

Ramsey experiment is calculated for a range of errors δ and ∆t. The two-dimensional display
of F(δ,∆t) will from now on be referred to as a stability diagram. For an ideal DD scheme,
the stability diagram shows a high fidelity in a large region around zero for both types of pulse
errors.

In order to calculate a stability diagram for a certain total dark time TD, the number of DD
cycles Nrep needed is calculated. Then, the fidelities F(δ,∆t) are calculated for constant errors
δ and ∆t throughout the entire Ramsey experiment with Nrep cycles. The x- and y-axis of the
stability diagram are normalized to the ideal π-pulse duration tπ = π/Ω and Rabi frequency Ω
respectively, to allow for an easier comparison to different systems.

All stability diagrams in this chapter show fidelities for constant pulse errors throughout
the Ramsey experiment. This allows for an easier characterization and comparison of different
DD schemes. It is assumed that both the detuning and pulse duration errors only drift slowly
compared to the duration of a DD cycle (between 0.43ms and 2.15ms) in the experiment.
Therefore, DD sequences are also insensitive to temporal variations of δ and ∆t, as long as both
parameters stay inside a high-fidelity region of the stability diagram.

Robustness of generalized spin-echo sequence

In the initial proposal for the LLI test [14], it was suggested to use the GSE sequence for DD.
However, this sequence yielded low coherence times on the order of a few milli seconds in the
2F7/2-manifold, compared to a Ramsey dark time aim of 1 s. The low coherence times achieved
with the GSE sequence can be explained by its low robustness against pulse errors.

Fig. 3.7 compares the stability diagrams of the UR10 and GSE sequences applied in the
eight-level system of the 2F7/2-manifold for TD = 1.0 s, close to the total dark time used for the
test of LLI in a single ion [13]. Furthermore, a Rabi frequency of Ω/(2π) = 33 kHz and dark time
of tw = 100 µs resemble the actual parameters of that experiment. As the GSE diagram shows a
ten times narrower error range, it is additionally projected onto the UR10 diagram for an easier
scale comparison. It is immediately clear that the UR10 sequence can compensate more than
an order of magnitude larger pulse errors than the GSE sequence can in this scenario. While
the UR10 sequence achieves high fidelities at any δ/Ω and ∆t/tπ in the ranges ±7% and ±8%
respectively, the GSE sequence only yields high fidelities in a small cross shaped area with error
ranges of approximately ±0.1% for both error sources. The specific cross shape in the case of
the GSE sequence also indicates that it can only compensate one of the error sources at a time,
as was already qualitatively shown in the Bloch sphere representation in Fig. 3.4.

Clearly, the UR10 sequence is overall more robust than the GSE sequence for the shown
experimental parameters. After the implementation for the LLI test of Dreissen et al. [13], a
coherence time of several seconds was observed in the F-manifold. Following this section, the
robustness analysis will be extended to the UR16 sequence, as well as even longer dark times to
identify a potential improvement for the planned multi-ion test of LLI.
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Figure 3.7: Stability diagrams for the UR10 (left) and GSE sequence (right) applied to aneight-level system for a total dark time of 1.0 s. The total dark time, Rabi frequency Ω/(2π) =
33 kHz and dark time paramter tw = 100µs were chosen to model the single ion LLI test [13].For an easier scale comparison the GSE diagram is projected onto the UR10 diagram. It isnot a zoom-in panel.

Robustness of UR10 and UR16 as candidates for the multi ion LLI test

It is not clear what limited the observed coherence time of several seconds in the F-manifold in
the single ion test of LLI [13]. All experimental sources of error lead to rf pulse imperfections,
which can be compensated by a robust DD scheme. Therefore, it is possible that a further
extension of the coherence time is possible with the implementation of an even more robust
sequence than the UR10 sequence. Furthermore, for the multi-ion test of LLI, additional rf
pulse errors can appear from one ion to the next, due to gradients in the applied B-field and
driving rf field. The magnitude of these error sources is small compared to the stability region
of the UR10 sequence in Fig. 3.7, as will be shown in Chapter 4. However, the addition of these
small errors onto those of the single ion case may result in the need for an even more robust DD
scheme.

Fig. 3.8 compares the stability diagrams of the UR10 sequence and the longer, more robust
UR16 sequence for total dark times of 1.0 s (left column) and longer dark times (right column).
As the stability region of the UR16 sequence is larger, the depicted error ranges are increased
compared to the previous Fig. 3.7. In order to quantitatively compare the different scenarios, a
high stability region (HSR) will from now on be defined as the region around δ = 0 and ∆t = 0,
where F ≥ 0.85. For an easy identification of these HSRs, the diagrams display all fidelities
≥ 0.85 in a separate red color map.

At 1.0 s of Ramsey dark time, it is visible that the UR16 sequence is more robust against
pulse duration errors. The HSR is approximately bounded as −18% ≤ ∆t/tπ ≤ 18%, where the
UR10’s HSR only covers −8% ≤ ∆t/tπ ≤ 8%. The robustness against detuning is the same for
both sequences. Remarkably, it is higher the shorter the pulses are. At ∆t = 0, the HSR spans
−7% ≤ δ/Ω ≤ 7%. This range for the detuning also does not change at longer dark times. As the
right column of Fig. 3.8 shows, increased dark time only decreases the robustness against pulse
duration errors. At a dark time of 5.0 s, the UR16 HSR spans a range of −14% ≤ ∆t/tπ ≤ 14%.
This range is significantly higher than the range of the UR10 sequence at a darktime of 1.0 s.

In summary, the UR16 sequence only provides an advantage over the UR10 sequence, if
the achieved coherence time is limited by the pulse duration errors. In that case, the UR16 is
significantly more robust.
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Figure 3.8: Stability diagrams of the UR10 sequence (top row) and UR16 sequence (bottomrow) applied to an eight-level system for different Ramsey dark times TD, as indicated bythe titles of the individual diagrams. The Rabi frequency Ω/(2π) = 33 kHz and dark time
tw = 100µs resemble the parameters of the single ion LLI test [13]. For easier comparison,the high fidelity regions (HFR) with F ≥ 0.85 are displayed with a separate red color map.
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3.6 Experimental robustness validation in the 2S1/2-ground state

In the previous sections, the DD sequences were studied with simulations based on the numerical
model presented in Sec. 3.1. Here, the correctness of this model is verified through experimental
tests of the stability diagrams. For the GSE and UR10 sequence, the π-pulse duration is scanned
at different fixed detunings, producing horizontal cross sections of the stability diagram. This
measurement cannot be performed in the 2F7/2-state, because the excitation and deexcitation
on the E3 transition takes too much time, approximately 50ms. As a result, the ambient B-field
and rf power would drift during the measurement, inhibiting a comparison to the numerical
simulation. Therefore, the measurement is performed in the 2S1/2-ground state.

Method

As a reference for the experimental tests, a stability diagram is calculated for a two-level system
with Ω extracted from Rabi flobs in the 2S1/2-ground state. The test is performed with 50 rf
pulses and tw = 100 µs, amounting to a total dark time of TD = 10ms. In order to verify the
correctness of the stability diagram, the experimentally set π-pulse duration is varied at a fixed
rf frequency, resulting in a scan of a horizontal line in the diagram. The measured fidelities are
compared to a fidelity range extracted from the stability diagram, assuming a B-field drift of
approximately 10 µG during the measurement duration of around 5min for a single scan.

The experimental sequence begins with Doppler cooling of the ion to a temperature of
approximately 0.5mK on the dipole allowed transition near 370 nm. In order to prepare the
ion in the initial state of

∣∣2S1/2, mJ = +1/2
〉
, circular polarized 370 nm light is applied with a

beam parallel to the quantization axis. As κ = 0 for the ground state, the ideal outcome of the
Ramsey experiment with no rf pulse errors should be again the initial state. The detection of
the final state is performed via electron shelving to the 2D5/2 state and fluorescence detection
on the dipole transition. The narrow laser near 411 nm only excites the mJ = 1/2 substate
to the

∣∣2D3/2, mJ = 5/2
〉
state. Therefore, the ion only appears bright during the fluorescence

detection if the final state is the mJ = −1/2 substate. The experiment is repeated 50 times
to obtain measurement statistics. However, as the shelving transition only has an efficiency of
about 85%, the probability P−1/2 of measuring the mJ = −1/2 state only covers the interval
[0.15, 1]. To obtain the fidelity of the Ramsey experiment, the measured probability P−1/2 is
rescaled to the interval [0, 1].

Results for the GSE sequence

The GSE sequence was repeated 25 times to reach the total dark time of 10ms. Fig. 3.9 (a) shows
the corresponding stability diagram with colored horizontal lines representing the experimental
scans of the π-pulse duration at four different rf frequencies. The measured fidelities along these
lines are displayed in (c), where the color of the measured points corresponds to the color of
the respective line in (a). Additionally, the figures in (b) contain the respective fidelity ranges
extracted from (a) as gray shaded areas. All four measurements show strong agreement between
the calculated and measured fidelities.

Results for the UR10 sequence

The UR10 sequence was repeated five times to reach the dark time of 10ms. Fig. 3.9 (b) shows
the stability diagram with the measurements represented by the colored lines. The measurements
along these lines is displayed in (d), where the color of the measurement points corresponds to
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the color of the lines in (a). Similarly to the measurement of the GSE sequence, the results show
strong agreement with the numerical simulation.

The direct comparison between the measurements of the GSE and UR10 sequence again
shows the higher robustness of the latter, especially since the displayed detuning range for the
UR10 sequence in (b) is four times larger. The advantage of the UR10 sequence is even stronger
when DD is applied in an eight-level system and at longer dark times. In both cases the stability
region narrows down more for the GSE sequence than for the UR10 sequence.
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(a) (b)

(d)(c)

Figure 3.9: Experimental validation of the stability diagram for the GSE and UR10 sequencesperformed in the 2S1/2-ground state with a total dark time of 10ms. (a) and (b) show thecalculated stability diagrams for 25 and 5 repetitions of the GSE and UR10 sequence, re-spectively, both with tw = 100µs. The colored lines represent measurements of the fidelityunder varying π-pulse duration for four different rf-frequencies, displayed in (c) and (d) forthe GSE and UR10 sequence respectively. There, the colors of the measurement points cor-respond to the respective lines in the stability diagrams. For both (c) and (d) grey shadedranges show the simulated fidelity, assuming fluctuations of 10µG during the measurementduration of ≈ 5min for a single scan.
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CHAPTER 4

Spatial field homogeneity
characterizations

This chapter contains the spectroscopic measurement of both the B-field gradient and the res-
onant rf field gradient. First, the maximum allowed field gradients allowed for the LLI test are
estimated. Both of the fields need to be homogeneous enough over the extent of an ion crystal
to allow high enough fidelities of the rf pulse sequence. The maximum allowed B-field gradient
is even more stringently bounded by the necessity to efficiently and simultaneously excite all
ions via the E3 transition.

Next, the B-field gradient is inferred from a simultaneous measurement of the E2 transition
center frequency on six ions in a weakly confined 125 µm long Coulomb crystal. Using a positional
shift of one of the B-field coils and a differential current to the coils, a reduction of the measured
B-field gradient to (0.00± 0.03) µG/µm is demonstrated.

Finally, the resonant rf field gradient is inferred from the measurement of π-pulse durations
tπ using simultaneous Rabi flops in the 2S1/2 ground state. At tπ deviations of less than 0.7%
over the crystal, no minimization of the rf field gradient is necessary.
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4.1 Estimation of maximally allowed gradients

Quantization B-field gradient

A gradient of the quantization B-field along the Coulomb crystal of ions has two effects on
the experiment. Firstly, the linear Zeeman shift is different for each ion and therefore the E3
transition center frequency ν0 is slightly different. As the linewidth (FWHM) of this transition
is on the order of 10Hz [18], a small detuning of a few Hertz significantly reduces the excitation
probability.

The excitation probability to the 2F7/2-state is already reduced due to the limited coherence
time during π-pulse excitation and the strong AC-Stark shift, as shown in Ch. 5. Therefore,
it is desired that the B-field gradient is reduced to a level, where it is negligible for the E3
excitation efficiency across the crystal. An upper bound for the B-field gradient is set, such
that a maximum E3 center frequency shift between the center and outermost ions in a crystal
of length 100 µm is less than ∆ν = 1Hz. With the Zeeman sensitivity of 0.6Hz/µG for the
transition from mJ = −1/2 to mJ = 1/2 a maximum gradient of∣∣∣∣∣d|B|

dz

∣∣∣∣∣
max

=
1

0.6Hz/µG
·

1Hz

0.5 · 100 µm
≈ 0.03 µG/µm (4.1)

follows1.
The second effect of the different Zeeman shifts along the crystal is a different rf transition

center frequency for the composite pulse sequence in the 2F7/2-manifold. The Zeeman sensitivity
of the transition between neighboring levels is 1.6Hz/µG. In section 3.5, the simulations show
that a rf detuning within δ/Ω = ±5% can easily be compensated by the UR10 sequence, even
at a long dark time of 2 s. The Rabi frequency typically lies around 33 kHz in the experiment.
Therefore a rf detuning of over 1.6 kHz can be compensated. This B-field gradient requirement
is much less stringent compared to the requirement imposed by the E3 transition excitation
efficiency.

Rf driving field gradient

A gradient in the intensity of the rf driving field along the Coulomb crystal causes a shift in the
Rabi frequency Ω and thus different π-pulse durations tπ. The simulations in section 3.5 show
that relative π-pulse duration errors of up to 8% can be compensated by the UR10 scheme.
However, it has to be considered that the single ion implementation of the sequence already
showed the necessity of a robust scheme. Therefore, temporal variations of the rf intensity occur
as well. Additional spatial variations caused by an intensity gradient of the rf driving field
should be smaller. As a conservative requirement, a maximum spatial variation of tπ along the
crystal of 1% is considered.

4.2 Quantization B-field gradient

The experiment’s quantization B-field is set with a pair of coils aligned along the H2 beam, as
indicated in the cross section drawing in Fig. 4.1. The distance between the coils is higher than
the distance in a Helmholtz configuration. Therefore, the B-field strength is not homogeneous
along the H2 beam, but decreases towards the center of the coils. As the angle between the

1Here the z-direction refers to the trap axis. This is in contrast to Ch. 2, where it is the direction of the
quantization B-field.
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H2 beam and the trap axis is small, the B-field strength behaves similarly along the trap axis,
showing a minimum where the trap axis crosses the central plane between the coils. Because
the length of a ten ion Coulomb crystal, ≈ 100 µm, is small compared to the distance between
the coils, the curvature of the field strength is negligible. To minimize the local linear B-field
gradient, the B-field minimum has to overlap with the trapping region.

Figure 4.1: The experiment’s geometry from a top view, modified figure from ref. [21]. Thequantization B-field is generated by two coils aligned along the H2 beam. The left coil canbe moved back and forth by a few millimeter, while the right one is fixed. The trap axis isdisplayed in red.
Measurement method for B-field gradient

In order to directly measure the B-field gradient in the trapping region, spectroscopy on a
Coulomb crystal of ions is used. A simultaneous measurement on all ions of the crystal has
the advantage that temporal B-field drifts don’t influence the result. For each ion, the center
frequency of a Zeeman sensitive transition is measured. The frequency shifts along the crystal
quantify the local B-field gradient. The narrower the used transition is, the more accurate
the extracted center frequencies. However, the very narrow E3 transition is not well suited,
because in addition to the Zeeman shift, the large AC-Stark shift can vary along the crystal.
Therefore the E2 transition from the 2S1/2 ground state to the 2D5/2 state was used. The driving
411 nm beam has a waist of w = 83 µm and can illuminate an entire Coulomb crystal. At low
optical power, Fourier limited transition linewidths of around 800Hz can be achieved, which are
sufficiently narrow to characterize the B-field gradient. A high Zeeman sensitivity of 2.8MHz/G
is achieved with the transition from mJ = ±1/2 to mJ = ±5/2.

For all measurements of the B-field gradient in this chapter, a Coulomb crystal of six ions
with low axial confinement was used. The total length of the crystal was measured to be 125 µm,
using the distance of the fluorescence peaks on the EMCCD chip and a magnification factor of 24
of the imaging setup [22]. The ions are first cooled to Doppler temperature and then optically
pumped to the |S,mJ = −1/2⟩ state. Then a π-pulse of 411 nm light is applied, followed by
flourescence detection on the dipole transition near 370 nm.

Each spectrum was measured by scanning the laser frequency with a doublepass AOM in
steps of 100Hz and repeating the measurement 200 times at each frequency. A typical spectrum
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for all six ions is shown in Fig. 4.2. As the absolute transition frequency is irrelevant for the
calculation of the B-field gradient, the laser frequency is subtracted by a common offset. The ions
are labelled from 1 to 6 (leftmost to rightmost in Fig. 4.1). The depicted error bars represent the
quantum projection noise. The different maximum excitation probability of each ion is caused
by the Gaussian beam profile of the 411 nm beam causing different Rabi frequencies for each
ion. For all spectra used in this chapter, the measurement contrast for all ions was at least 50%.
Fig. 4.2 also contains a fit of the measured spectral lines. As a fit function a Gaussian of the
form

Pe(ν) = P0 · exp
(
−(ν − ν0)

2

2σ2

)
, (4.2)

was used, with the excitation probability Pe and laser frequency ν. The fit parameters are the
maximum excitation probability P0, transition center frequency ν0 and 1/e linewidth σ. As only
the fitted center frequency is of interest, the Gaussian function was chosen for easier handling
in the fitting process, instead of the physically correct model for excitation with a rectangular
π-pulse.

Figure 4.2: Typical spectra of the 2S1/2 to 2D5/2 transition, measured simultaneously on sixions in a Coulomb crystal. For each point the average of 200 measurements is taken andthe error bars show the quantum projection noise. To extract the center frequency of eachspectral line, a Gaussian fit of Eq. 4.2 is used.
The six different transition frequencies ν0 obtained from the measured spectra are used to

calculate a B-field gradient. Fig. 4.3 shows the fitted center frequencies of the spectra in Fig.
4.2 plotted over the respective ion’s position as blue points. To reduce the effect of statistical
deviation, a second spectrum is measured and the center frequencies displayed in red. Each
fitted center frequency ν0 is displayed with an error bar representing the error obtained by the
Gaussian fit. The results from both spectra in Fig. 4.3 agree well and show a clear linear
dependence of ν0 on the ion’s position along the trap axis. A combined linear fit of ν0(z)
results in a slope of (1.28 ± 0.06)Hz/µm, where the uncertainty is the fit error of a weighted
fit considering the uncertainties of the individual transition frequencies. From this slope, the
B-field gradient can be calculated using the Zeeman sensitivity as

d|B|
dz

=
1

2.8Hz/µG
·
dν0

dz
. (4.3)

36



Chapter 4. Spatial field homogeneity characterizations

The resulting gradient is (0.44±0.02) µG/µm. In the following sections, two methods for reducing
the B-field gradient at the crystal’s position are presented. Each measurement of the gradient
is performed using exactly the same method as is described in this section.

Figure 4.3: The fitted center frequencies obtained in two measurements over the respectiveion’s position. The error bars represent the uncertainties obtained by a fit of the respectivespectra. As only the frequency gradient along the crystal is of interest, a common frequencyoffset is subtracted from each of the two measurements.
Reduction of gradient via the coil position

A reduction of the B-field gradient was achieved by both repositioning one of the coils and
moving the ion crystal within the trapping segment. Fig. 4.4 shows the measured gradients
after both of the described adjustments. The x-axis gives the position of the crystal’s center
along the trapping axis in respect to the usual trapping location close to the center of the 2mm
long segment. The three different point colors in the plot represent three different positions of
the left B-field coil in Fig. 4.1. At the initial coil position the crystal was shifted 382 µm to the
left and 378 µm to the right by changing the DC voltages of the trap electrodes confining the
crystal axially. The distances were measured by comparing the initial and final position of the
fluorescence peaks on the EMCCD camera. Within this position range, the B-field gradient was
tuned between (−0.22± 0.02) µG/µm and (−0.13± 0.02) µG/µm.

With the crystal positioned at the center of the trapping segment, the position of the B-field
coil was moved two times. First the coil was pulled away from the chamber by a few millimeters.
This changed the gradient from (−0.15± 0.03) µG/µm to (0.08± 0.02) µG/µm. Afterwards the
coil was pushed back towards the chamber, yielding a gradient of (−0.06± 0.02) µG/µm.

In summary, moving the ion crystal within the trapping segment does not provide a large
enough tuning range and is impractical, because it requires a realignment of all laser beams.
Moving the left coil in Fig. 4.1 allows for a large enough tuning range to move the B-field
minimum across the ion crystal. However, the placement of the coil by hand is not accurate
enough to reduce the gradient to below the threshold of 0.03 µG/µm. This method should only
be used for a rough initial minimization followed by fine adjustments with the current thief
method presented in the next section.
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Figure 4.4: Measured B-field gradients at different positions along the trapping axis withinthe 2 mm segment (indicated by the x-axis) and different positions of the left B-field coil inFig. 4.1 (indicated by the point colors).
Reduction of gradient using a current thief

A fine adjustment of the B-field gradient to below the set threshold of 0.03 µG/µm was achieved
by implementing a tunable differential current between the two B-field coils. The differential
current is set by adding a voltage-controlled resistance (current thief) in parallel to the left
B-field coil, as indicated in Fig. 4.5 (a). The current thief can take control-voltages Ut between
0V and 5V. Fig. 4.5 (b) shows the measured B-field gradient at five different applied values of
Ut. The gradient response is linear around the central value Ut = 2.5V and saturates towards
the edges of the tuning range. A movement of the coil during the attachment of the current
thief by chance caused a reduction of the gradient to (0.00 ± 0.03) µG/µm when Ut = 0V is
applied. At Ut = 5V, the gradient was measured to be (0.50± 0.02) µG/µm.

Using the current thief allows to finely minimize the B-field gradient. The accuracy of this
method is only limited by the accuracy of the gradient measurement method using spectroscopy
of the E2 transition. Ideally, the coil should be positioned, such that a zero B-field gradient is
achieved in the linear tuning range around Ut = 2.5V. For the multi-ion E3 excitation presented
in Ch. 5 the B-field gradient was minimized again. There, the coil was positioned in the ideal
way and a fine scan of the gradient was performed in the linear range around Ut = 2.5V. The
result is presented in Sec. 5.4.
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Figure 4.5: Schematic circuit diagram of the current thief placement (a) and measured B-field gradients at different control voltages of the current thief (b).

4.3 Transition driving rf field gradient

The gradient of the transition driving rf field was measured with a 125 µm six ion crystal as well.
Rabi flops between the two Zeeman sublevels of the 2S1/2 ground state were used to determine
differences in the Rabi frequency along the crystal.

The ions were Doppler cooled and optically pumped to the
∣∣2S1/2,mJ = −1/2

〉
state. Then,

the resonant rf field was applied for varied times up to 5.2ms, driving Rabi flops between the
mJ = −1/2 and mJ = +1/2 Zeeman sublevels. The detection of the final state was achieved by
shelving the

∣∣2S1/2,mJ = −1/2
〉
state to the

∣∣2D5/2,mJ = −5/2
〉
state and performing fluores-

cence detection on the 2S1/2 to 2P1/2 transition. If an ion appears dark during the detection, it
was in the

∣∣2S1/2,mJ = −1/2
〉
state after the rf field application. Because of the limited waist

w = 83 µm of the 411 nm beam, shelving could not be efficiently performed for all ions with the
same π-pulse duration. Instead, a long 15ms laser pulse was applied, during which decay to
the long lived 2F7/2 state takes place with a large probability. This method resulted in a more
uniform shelving efficiency between 70% and 80% across the crystal.

The final 200 µs of the total 5.2ms of Rabi flops are shown in Fig. 4.6 (a). Due to the
finite shelving efficiency, the measured excitation probabilities do not drop below 20%. The
limited maximum excitation probabilities between 80% and 90% are caused by inefficient optical
pumping, partly caused by the finite waist and non-central alignment of the H2 370 nm beam.
It was not possible to perform a fit with the model function on the entire 5.2ms of Rabi flops.
Instead, only the displayed last 200 µs were fitted, where a small phase shift between the sine-
oscillations has accumulated. The measured data was fitted according to

Pe(t) = Pmax sin

(
πt

2tπ

)2

+ P0, (4.4)

with fitting parameters Pmax, P0 and π-pulse duration tπ.
In Fig. 4.6 (b) the relative deviation ∆tπ/⟨tπ⟩ of the fitted π-pulse durations to the average

over the crystal ⟨tπ⟩ is plotted over the respective ion position. The error bars represent the
fit uncertainty, covering a range of −0.7% < ∆t/tπ < 0.6%. This range is well within the set
threshold of ±1% of π-pulse duration errors across the crystal. Therefore, a minimization of the
rf field gradient is not necessary. Furthermore, the measured range of π-pulse duration deviations
is dominated by the uncertainty of the fitting procedure. A more precise measurement of the
individual π-pulse durations would likely yield less deviation.
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Figure 4.6: Measurement of the homogeneity of the transition driving rf field. (a) shows thelast 200µs of a total 5.2 ms of Rabi flops between the two Zeeman levels of the 2S1/2 groundstate. During this time only a small phase offset has accumulated between the Rabi flopsof the individual ions. The measured data is fitted using Eq. 4.4 and the deviation of theextracted π-pulse durations are shown in (b) over the respective ion position.
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CHAPTER 5

Coherent excitation of a Coulomb
crystal to the 2F-state7/2

The simultaneous coherent E3 excitation with high population transfer of all ions in a Coulomb
crystal is essential to a successful multi-ion LLI test. This chapter contains the progress made
towards the excitation of ten ions, from the design of the interrogation laser profile to the
successful simultaneous excitation of six ions.

First, the large measured AC-Stark shift is considered to calculate a requirement of the
interrogation laser field uniformity over the ion crystal. To meet the requirement of less than
±2% laser intensity variation and efficiently use the available laser power, a focussed line-shaped
top-hat beam profile is produced with a custom designed phase plate. The optical setup is
introduced and the uniformity of the beam profile is measured with a high-resolution beam
profiling camera. A highly uniform section of the profile is used to excite a linear eight ion
crystal, resulting in the successful simultaneous excitation of six ions at the same transition
frequency.
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5.1 AC-Stark shift and beam homogeneity requirements

For simultaneous coherent excitation to the 2F7/2 state, all ions need to be driven with the
same Rabi frequency at the same E3 transition frequency. The most limiting effect is the strong
AC-Stark shift of ∆νAC ≈ 440Hz at a typical intensity of the interrogation laser field leading to
a π-pulse duration of tπ = 50ms [18]. Different laser field intensities at each ion position lead to
different AC-Stark shifts larger than the Fourier limited linewidth (FWHM) of ∆νFourier ≈ 17Hz
for π-pulse excitation at the previously assumed laser intensity. The relation between AC-Stark
shift frequency and corresponding Fourier-limited linewidth

∆νAC = (0.66± 0.06)Hz−1∆ν2Fourier (5.1)

was measured in ref. [18]. It is used in the following to calculate the reduced excitation proba-
bilities of ions in a crystal for different intensity variations to obtain requirements on the beam
homogeneity.

The excitation probabilities are calculated with the Lindblad equation solver provided by
the Python package QuTiP. The Lindblad equation

∂tρ = − i

ℏ
[H, ρ] +

∑
j

(
cjρc

†
j −

1

2
ρcjc

†
j −

1

2
cjc

†
jρ

)
(5.2)

is used here to model the time evolution of the density matrix ρ for the two-level system composed
of the 2S1/2 (|0⟩) and 2F7/2 (|1⟩) states. The total Hamiltonian

H = Hatom +Hinteraction = 2πνAC,diff |1⟩ ⟨1|+ 1

2
Ω (|1⟩ ⟨0|+ |0⟩ ⟨1|) (5.3)

accounts for the differential AC-Stark shift of an ion compared to the average AC-Stark shift over
all ions of a Coulomb crystal and the intensity dependence of the Rabi frequency Ω on intensity
variations compared to the average intensity over the crystal. For this calculation, only a single
collapse operator c =

√
Γ |0⟩ ⟨0| is considered, accounting for the measured decoherence time

τ = (190± 27)ms during the interaction [18].
The quantity of interest is the excitation probability of an ion that is illuminated with

intensity I = Iav +∆I compared to the average intensity Iav after the average π-pulse duration
tπ. This quantity is shown in Fig. 5.1 for four different π-pulse durations. With the highly
focused Gaussian beam used for single ion excitation, π-pulse durations of 50ms can be achieved
[18]. At this high intensity the decoherence limited maximum excitation probability is ≈ 90%.
Due to the large AC-Stark shift at this high intensity, the excitation probability drops off quickly
with |∆I/Iav|, which induces a detunig to the transition. For lower intensities and thus longer
pulse durations, the maximum excitation probability decreases, but the drop-off with intensity
variations is less severe.

In order to gain significant sensitvity to LV in a multi-ion LLI test, the measurement contrast
should stay as high as possible for all ions in the crystal. Therefore, a goal of at least 80%
excitation probability on the E3 transition is set for all ions. From Fig. 5.1 it is apparent,
that π-pulse durations of less than 100ms have to be achieved, as decoherence becomes limiting
otherwise. For sensible π-pulse durations between 70ms and 80ms, the laser intensity may not
vary more than ±2% over the entire ion crystal to maintain at least 80% excitation for all ions.
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Figure 5.1: Calculated maximum excitation probability on the E3 transition with π-pulses ofdifferent duration tπ over a relative laser intensity variation, causing a detuning via the AC-Stark shift. The excitation probabilities are calculated by solving the Lindblad equation nu-merically and assuming measured values for achievable π-pulse durations, and correspond-ing AC-Stark shifts [18].

5.2 Beam shaping method

Beam shaping device

A holographic phaseplate is used to transfer a Gaussian input beam (TEM00) into a focussed
line-shaped beam profile with a uniform intensity distribution along the center of the profile.
A line-shaped profile is chosen over standard square or circular top-hat profiles to efficiently
use the available laser power along the linear Coulomb crystal. The phaseplate is a custom
designed diffractive optical element (DOE) provided by HoloOr 1. It is a 1′′ fused silica plate
with a micro-structured pattern that diffracts the input light into the desired profile at a fixed
working distance of WD = 550mm. The DOE is designed to produce a 250 µm long line that
has a diffraction limited Gaussian profile with waist w = 33 µm in the transversal direction. The
250 µm length of the line profile describes the 1/e2-length, corresponding to a region of ≈ 150 µm
with intensity variations below 2% at the center of the line. For a sensitve LLI test with ten ions,
the linear Coulomb crystal needs to have a length of ≈ 100 µm. To obtain the desired intensity
profile, the collimated Gaussian input beam has to fulfill the exact design criteria, which are a
waist of w = 2.5mm and an M2-value as close to 1 as possible.

1For future purchases of the same DOE design, the sales opportunity number IN22016775 can be referenced.
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Test setup

The intensity distribution of the shaped flat-line beam was characterized with a high resolution
beam profiling camera in a test setup depicted in Fig. 5.2. The main optical components are
the same as used for the setup pointing to ions.

First, the light is delivered with a single mode polarization maintaining optical fiber with
FC/APC-connectors. The fiber is used as a mode cleaning device, delivering a nearly perfectly
shaped Gaussian beam profile. A large beam fiber outcoupler (Thorlabs, C20APC-A) is chosen,
so that the exiting beam with a waist of w ≈ 1.9mm can directly be expanded to the required
w = 2.5mm with the following telescope. Additionally, Thorlabs promises a high Gaussian
beam quality with M2-values close to one, due to the air spaced lens design. The variable
telescope (Thorlabs, ZBE2A) offers continuous beam expansion between 1x and 4x and tunable
collimation correction. Both of these degrees of freedom had a large impact on the quality of
the final shaped beam, making the variable telescope an indispensable component of the setup.

The holographic phaseplate is aligned with a 6-axis kinematic mount (Thorlabs, K6XS)
on top of a translation stage. Tests of all the degrees of freedom showed, that the x- and y-
positioning of the phaseplate is more crucial than the tilt settings. A careful manual placement
of the phaseplate mount and the telescope in respect to each other suffices for low enough tilt.
The translation stage can be used to move the phaseplate along the beam propagation direction,
allowing for fine control of the beam focus position. During the alignment procedure with the
test setup, and later on while aligning the beam onto the ions, it proved more convenient to
use the tunable collimation correction of the telescope to slightly move the focal position of the
beam. Using the translation stage introduces a slight beam walk-off, because the stage does not
move perfectly collinear with the beam direction. Finally, the rotation setting of the mount is
important to define the orientation of the line shaped beam profile along the ion crystal.

A high resolution beam profiling camera (Ophir, 3.69 µm effective pixel size) is placed 550mm
after the phaseplate at the specified focal position. The most uniform intensity distribution
recorded with the camera is shown in the next section.

Figure 5.2: Test setup for the characterization of the shaped flat-line profile using a highresolution beam profiling camera.
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5.3 Beam shaping results

Flattest line profile achieved

Using the test setup, all alignment degrees of freedom were thoroughly tested. The recorded
profile with the most homogeneous intensity distribution is shown in Fig. 5.3. It does not fully
match the design criteria. However, the intensity distribution in a region of the beam is flat
enough to be used for excitation on the E3 transition. Additionally, the observed imperfection
can be attributed to noise in the Gaussian intensity profile, used to illuminate the phaseplate.
Therefore it is likely that the phaseplate itself perfectly matches the specifications.

Fig. 5.3 (a) shows the full recorded intensity profile. For a more detailed characterization,
vertical and horizontal cut-throughs of the profile are shown in (b) and (c) respectively. The
cut-throughs are obtained by extracting the values from a single column/row of pixels from the
camera image. In the vertical direction, the beam exhibits a close to perfect Gaussian profile
with a fitted waist of w = 33.5 µm. This agrees well with the diffraction limited spot size
w = 33 µm of a Gaussian beam with a waist of w = 2.5mm at a focal distance of 550mm.

The horizontal cut-through in Fig 5.3 (c) shows a flat intensity distribution on the right
side, which is magnified in the zoom-in panel. Here it can be seen that the intensity variation
is less than ±2% of the average over a distance of approximately 80 µm. This region of the
beam is well suited for the E3 excitation of Coulomb crystal with that length. The left side of
the beam features a peak and a dip, where the intensity varies by a maximum of +11% and
-9% in respect to the average intensity of the flat section. Therefore, the left side cannot be
used for E3 excitation. The imperfection of the profile was found to be caused by the Gaussian
beam illuminating the phaseplate. When the phaseplate is rotated by 180◦ in its mount and
the beam is realigned, the imperfection is still located on the left side of the shaped profile.
However, when the attached system of fiber outcoupler and telescope is rotated by 180◦, a
mirrored version of the shaped profile is observed on the camera image, wtih the peak on the
right side. A characterization of the Gaussian profile exiting the telescope is performed in the
next section.
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Figure 5.3: Measured intensity distribution of the shaped flat-line profile using the test setupof Fig. 5.2. (a) shows the full 2D-profile with white dashed lines indicating the location of ahorizontal and vertical cut-through. (b) shows the vertical cut-through with a Gaussian fit.(c) shows the horizontal cut-through with a zoom-in panel of the flat intensity region.
Spatial noise on Gaussian input beam

As the imperfection in the shaped line profile can be attributed to noise in the beam illuminating
the phaseplate, a further investigation of the Gaussian profile was performed with the beam
profiling camera. The camera was placed at the output end of the telescope in the test setup
and the magnification and collimation settings of the telescope were set to the values that
produced the line profile in Fig. 5.3. The measured intensity profile is depicted in Fig 5.4,
where (a) shows the full 2D-profile and (b) and (c) show the central horizontal and vertical
cut-throughs respectively, along with Gaussian fits according to

I(x) = I0 · exp
(
−2 (x− x0)

2

w2

)
. (5.4)

It can be observed, that the fit functions differ considerably from the recorded intensity distribu-
tions, which include high-frequency spacial noise around the peak and fall off slower at the edges.
In addition, the fitted waist in the horizontal direction wh = 2.19mm is much smaller than the
waist in the vertical direction wv = 2.49mm, the latter being very close to the specified waist
for the phaseplate w = 2.5mm. It is unclear which of the imperfections in the Gaussian beam
cause the peak in the shaped line profile, so further investigations are necessary. An explanation
for the two different waists could be an angle mismatch between the fiber tip of the FC/APC
connector and the lenses in the fiber outcoupler, inducing comatic aberration. Therefore it could
be useful to test the system with an unangled FC/PC fiber and outcoupler.
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Figure 5.4: Measured beam profile at the exit of the telescope set to the magnification andcollimation values used to achieve the line profile in Fig. 5.3. (a) shows the full measuredprofile, where the frame size is limited to the chip size of the camera. (b) and (c) show centralhorizontal and vertical cut-throughs respectively, along with Gaussian fits according to Eq.5.4.

5.4 Coherent E3 excitation in a Coulomb crystal

Beam alignment process

The process of aligning the shaped line profile of the 467 nm beam to the linear ion Coulomb
crystal is challenging, because in addition to the lateral pointing also the precise focal distance
and the correct angular orientation of the phaseplate need to be found. It is not feasible to use
the E3 excitation directly as a feedback during alignment, because the AC-Stark shift causes a
frequency shift of several transition linewidths, depending on how well the beam overlaps with
the ions. Therefore, the alignment was done while performing spectroscopy on the E2 transition
from the 2S1/2 to the 2D5/2 state and monitoring the AC-Stark shift induced by the 467 nm light
on it. An eight-ion crystal of ≈ 80 µm length was used to infer the intensity distribution of the
beam along the trapping axis.

For the measurement of the AC-Stark shift to the E2 transition νAC,411, two Rabi frequency
scans were taken in an interleaved fashion. During one scan the 467 nm light was switched off
and during the other scan it was switched on. The E2 interrogation beam power was highly
attenuated, leading to 2.0ms π-pulses and narrow transition linewidths (FWHM) of ≈ 650Hz.
Fig. 5.5 (a) shows an exemplary measurement of the two frequency scans along with Gaussian
fits of each transition. The difference of the fitted center frequencies corresponds to the AC-Stark
shift νAC,411 = (423± 18)Hz.

This described measurement is simultaneously performed on all ions of the crystal. Through
an iterative process of adjusting the alignment parameters and measuring the AC-Stark shift,
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a uniform intensity distribution was reached. Fig. 5.5 (b) shows the corresponding fitted AC-
Stark shifts for all ions over the respective ion positions. The lowest and highest value differ
by -4% and +3%, respectively, from the average over the crystal. Especially the crystal section
between the third and seventh ion from the left shows a highly uniform AC-Stark shift.

Figure 5.5: Measurement of the AC-Stark shift induced by the 467 nm laser beam onto the E2transition. (a) exemplarily shows two interleaved Rabi frequency scans of the E2 transition,with the 467 nm light switched on and off, for the leftmost ion in the crystal. The transitionsare fitted with Gaussian curves and the transition center frequencies are extracted, yieldingthe shift. (b) shows the AC-Stark shift for all ions over the respective ion position.
Successful multi-ion excitation

Using the 467 nm beam alignment corresponding to the uniform measured AC-Stark shifts shown
in Fig. 5.5 (b), a simultaneous coherent excitation of the eight ion Crystal was achieved.

The characterization of the magnetic field gradient had been performed months before this
measurement and the quantization B-field coils were likely moved while working on the optics
surrounding the experimental chamber. Therefore, another scan of the B-field gradient at differ-
ent current thief voltages was taken using the ≈ 80 µm long eight ion crystal, following the same
procedure as outlined in Sec. 4.2. The result is shown in Fig. 5.6. The smaller length of this
crystal resulted in larger measurement uncertainties of the gradient. Nonetheless, a successful
compensation of the gradient was performed. The measured data was fitted with the linear
function

d|B|
dz

= 0.144
µG

µmV
· Uthief − 0.29

µG
µm

(5.5)

leading to zero gradient at Uthief = 2.05V.
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Figure 5.6: Final measurement of the magnetic field gradient at different current thief volt-ages, following the procedure of Sec. 4.2. A linear fit of the data yields a gradient of zero ata thief voltage of Uthief = 2.05 V.
After zeroing the B-field gradient, a frequency scan of the E3 transition from mJ = −1/2

to mJ = −1/2 was performed simultaneously on all ions of the crystal using Rabi spectroscopy.
With 36mW of laser power entering the experimental chamber and a resulting π-pulse duration
of tπ = 85ms, the spectra shown in Fig. 5.7 were measured. The ions are labeled from leftmost
to rightmost on the EMCCD image. At each interrogation laser frequency, 100 measurements
were performed. The frequency step size of 3Hz was limited by the 1.5Hz resolution of the rf
frequency source of the doublepass scanning AOM. Each ion’s transition is fitted with a Gaussian
function to extract the transition center frequency ν0 and FWHM linewidth.

The fitted transition center frequency of the six central ions in the crystal is identical within
the fitting uncertainty of 1Hz. Only the outer two ions show a red-shift, ∆ν = (−2± 1)Hz for
the leftmost ion and ∆ν = (−5 ± 1)Hz for the rightmost ion, indicating a smaller AC-Stark
shift at both edges of the crystal. A significant residual B-field gradient is not observed, because
the transition frequency at each end of the crystal would be shifted in opposite directions.
The observed maximum excitation probability of roughly 80% is consistent with the measured
decoherence time of τ = (190±27)ms [18]. The variance in the maximum excitation probability
of the central six ions is likely caused by fitting errors and the broad frequency step size. The
AC-Stark shift is so similar for these ions, that there should not be a significant difference in
Rabi frequency.

The transition frequency spread shows that the ion crystal is illuminated with a flat section
of the shaped beam, which falls off at either side. This agrees well with the AC-Stark shift
measurement on the E2 transition, shown in Fig. 5.5. The homogeneity of the laser field can be
quantified by using the measured relation ∆νAC,E3 = (0.66 ± 0.06)Hz−1∆ν2Fourier between the
absolute AC-Stark shift on the E3 transition ∆νAC,E3 and the Fourier limited linewidth ∆νFourier
[18]. The average fitted FWHM linewidth of the central six ions is ∆νFWHM = (10 ± 1)Hz,
agreeing well with the Fourier limit of ∆νFourier ≈ 0.89/tπ = 10.47Hz for a rectangular pulse of
tπ = 85ms duration. This leads to an AC-Stark shift of ∆νAC,E3 = (66± 7)Hz. Consequently,
the laser intensity deviation across the central six ions is less than (1.5± 0.2)%. The red-shifted
transitions of the outer ions correspond to intensity deviations of (−3.0± 0.4)% and (−8± 1)%.
These results agree well with the excitation probabilities calculated in the beginning of this
chapter.

49



Chapter 5. Coherent excitation of a Coulomb crystal to the 2F-state7/2

The length of the observed flat intensity region is given by the distance between the second
and seventh ion from the left, l = 60 µm. By using a higher axial confinement of the crystal, it
may be possible to interrogate more than the demonstrated six ions in that region. However,
this comes at the cost of higher quadrupole shifts and thus shorter Ramsey dark times in the
LLI test, limiting the sensitivity to LV.

Figure 5.7: Rabi frequency scan of the E3 transition from mJ = -1/2 to mJ = -1/2 using theshaped line laser profile and an eight ion Coulomb crystal of 80µm length. A beam powerof 36 mW was used, resulting in a π-pulse duration of 85 ms for the central six ions of thecrystal. The measured data points are fitted with Gaussian curves.
For the LLI test, a higher excitation probability of 90% would be beneficial, which can be

achieved with 50ms π-pulses. The simulated excitation probabilities in the beginning of this
chapter show that the measured laser field intensity variation of ≈ 1.5% across the central six
ions is low enough for 50ms π-pulses. For a 1.7-fold increase in Rabi frequency to reach 50ms
π-pulses, a roughly 3-fold increase in laser power would be necessary, which cannot be accom-
modated by the currently used laser system. Another method to increase the Rabi frequency
is an optimization of the angle between the light’s polarization axis and the quantization B-
field axis to meet the transition selection rules. At the time of the measurement no large free
aperture λ/2-waveplate was available and the orientation of the polarization axis could only
roughly be set by rotating the fiber outcoupler after the polarization maintaining fiber. With
the implementation of the waveplate and an optimization of the 467 nm laser power, a significant
improvement of the π-pulse duration should be possible.
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CHAPTER 6

Conclusion and outlook

Performing experimental tests of local Lorentz invariance is an important cornerstone of searches
for new physics beyond the Standard Model. Low energy LLI tests in the combined electron-
photon sector, as they are realized in trapped ion experiments, complement a range of lab
experiments and astrophysical observations at different energy scales. The LLI test method
presented in this thesis has been successfully implemented with a single Yb+-ion, setting the
current most stringent upper bounds to Lorentz violating tensor components for the electron-
photon sector in the mid and high 10−21-range [13]. A contribution to this test was made
with Ch. 3 of this thesis. The investigation of different dynamical decoupling schemes, lead to
the identification of the highly robust UR10 sequence. With this sequence an extension of the
coherence time during the rf sequence of about two orders of magnitude was achieved, which
was necessary to improve the sensitivity to LV compared to previous experiments. Together
with further experimental findings, the main results of Ch. 3 were published in ref. [32].

A high potential of the presented LLI test method lies in its scalability to N ions in a linear
Coulomb crystal, resulting in a sensitivity improvement by a factor of ≈

√
N . Chapters 4 and

5 of this thesis work towards an implementation of the test with a ten ion crystal. This would
allow a measurement of LV tensor components in the low 10−21-range after the total averaging
time for the single-ion test, τ = 591 h.

In Ch. 4, the homogeneity of the quantization B-field and the resonant rf-field in the trapping
region were measured via simultaneous spectroscopy on a 125 µm Coulomb crystal. The initial
B-field gradient was reduced by an order of magnitude to ≤ 0.03 µG/µm by applying a tunable
differential current between the B-field coils. Using this method, the gradient can be minimized
quickly in the future if long term shifts to the B-field gradient occur. With the demonstrated
low gradient, a simultaneous E3 excitation of ions in a 100 µm long crystal with Zeeman shift
variations of ≤ 1Hz is possible. The measurement of the resonant rf field uniformity showed
relative deviations in the π-pulse duration of < 0.7% over the crystal range of 125 µm. This
deviation is well within the UR10’s high-fidelity range for rf-pulse duration errors at a dark time
of TD = 1 s, −8% ≤ ∆t/tπ ≤ 8%, as shown in Sec. 3.5. Nonetheless, if the addition of the
static gradient-induced pulse duration error should reduce the coherence time compared to the
single-ion implementation, using the UR16 sequence with an even higher robustness to pulse
duration errors, −18% ≤ ∆t/tπ ≤ 18%, could solve the problem.

The most challenging aspect of scaling the LLI test to ten ions is the simultaneous coherent
excitation to the 2F7/2-state with a large population transfer. In Ch. 5 the successful simulta-

51



Chapter 6. Conclusion and outlook

neous excitation of six ions, spaced over ≈ 60 µm, with E3 transition frequency shifts of ≤ 1Hz
is demonstrated. This was achieved by shaping a focused line-shaped top-hat profile with a
holographic phaseplate. A ≈ 80 µm long section of the shaped profile has a measured intensity
variation of less than ±2% around the average. The phaseplate is designed to produce a uniform
intensity over a length of ≈ 150 µm. If it is possible to reduce or eliminate the observed spa-
cial noise on the Gaussian input beam, the specified profile will likely be achieved. This would
consequently allow the intended simultaneous E3 excitation of ten ions in a 100 µm long crystal.
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A.1 Calculation of the quadrupole shifts for ten ions in a crystal

The electric quadrupole energy shift ℏ∆νQS of a Zeeman sublevel |J,mJ⟩ is given by

ℏ∆νQS =
1

4

dEz

dz
Θ(2F7/2)

J(J + 1)− 3m2
J

J(2J − 1)
(3 cos2 β − 1), (A.1)

with the electric field gradient dEz/dz along the trap axis1, the quadrupole moment Θ(2F7/2)
and angle β between the quantization axis and the trap axis [33]. The quadrupole moment
of the 2F7/2 state of Yb+ was measured to be Θ(2F7/2) = −0.0297ea20 with the elementary
charge e and Bohr radius a0 [34]. In Eq. 2.6, κQS is defined as the component of νQS that is
proportional to m2

J , the remaining fraction of the quadrupole shift is identical for all Zeeman
sublevels. Therefore, κQS has the form

ℏκQS = −1

4

dEz

dz
Θ(2F7/2)

3m2
J

J(2J − 1)
(3 cos2 β − 1). (A.2)

The electric field gradient dEz/dz is the sum of the trapping field gradient and the gradient of
the electric field generated by other ions in the trap. The trapping field gradient has the form

dEz

dz
=

m(2πνax)
2

q
, (A.3)

where m is the mass of an ion, q its charge and νax the axial secular trapping frequency. The
electric field gradient induced by other ions at the location zi of ion i in a linear crystal of N
ions is given by

dEz

dz

∣∣∣∣
z=zi

=
N∑
j=1
j ̸=i

1

|zj − zi|
q

2πϵ0
, (A.4)

where ϵ0 is the vacuum permittivity. The coordianates zi of ion i in a crystal of N ions trapped
at νax is calculated in Ref. [35]. For the case of N = 10 ions, the coordinates are

[−2.8708, −2.1000, −1.4504, −0.8538, −0.2821, ...

...0.2821, 0.08538, 1.4504, 2.1000, 2.8708] · l
(A.5)

with the length scale

l =

(
q2

4πϵ0mν2ax

)1/3

. (A.6)

In the single ion LLI test, κQS for the specific superposition of Zeeman substates genereated in
the Ramsey experiment was measured to be 0.13 rad s−1 at an axial secular trapping frequency
of νax = 266 kHz [13]. Using the above equations, the measured κQS for a single ion can be
extrapolated for ions in a crystal trapped with the same νax. For the case of 10 ions, the result
is

(κi) = (0.148, 0.174, 0.194, 0.207, 0.214, 0.214, 0.207, 0.194, 0.174, 0.148) radHz. (A.7)

1Here the z-direction is defined along the trap axis, in contrast to Chapter 2, where it is defined along the
quantization axis.
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A.2 Construction of large-J spin matrices

The following derivation is based on ref. [36], ℏ is set to 1. The Zeeman-substates of a spin-J
system are eigenstates of the Jz-spin operator

Jz |J,mJ⟩ = mJ |J,mJ⟩ . (A.8)

Thus, the Jz-matrix has the form

Jz =



J

J − 1 0

. . .

0 −J + 1

−J


. (A.9)

The Zeeman substates can be raised or lowered into neighboring states using the ladder operators

J± |J,mJ⟩ = C±(J,mJ) |J,mJ ± 1⟩ , (A.10)

where

C±(J,mJ) =
√

(J ∓mJ)(J ±mJ + 1). (A.11)

Because the ladder operators are defined as

J± = Jx ± iJy, (A.12)

the Jx- and Jy-matrices can be constructed as linear combinations of J±:

Jx =
J+ + J−

2
, Jz =

J+ − J−
2i

. (A.13)

Using eq. A.10 to obtain the J±-matrix representation, Jx and Jy are constructed as

Jx =
1

2



0 C+(J, J − 1) 0

C−(J, J) 0 C+(J, J − 2)

. . .
. . .

. . .

C−(J,−J + 2) 0 C+(J,−J)

0 C−(J,−J + 1) 0


(A.14)

and

Jy =
1

2i



0 C+(J, J − 1) 0

−C−(J, J) 0 C+(J, J − 2)

. . .
. . .

. . .

−C−(J,−J + 2) 0 C+(J,−J)

0 −C−(J,−J + 1) 0


.

(A.15)
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