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Abstract

The thesis presents the results of the evaluation of the probe field induced ac-Stark shift and an
ion temperature analysis based on a theoretical model for sympathetic Doppler cooling in the
115In+ clock at PTB. The clock is based on a mixed-species Coulomb crystal trapped in a linear
Paul trap, where the 115In+ clock ions are sympathetically cooled by 172Yb+.
The probe field induced ac-Stark shift consists of two contributions, the probe field ellipticity-
induced shift and the ac-Stark shift by far off-resonant transitions. In an experimental analysis,
the ellipticity-induced shift is determined to be (0 ± 4) × 10−22. The ac-Stark shift by far off-
resonant transitions is calculated to be (−2 ± 5) × 10−22 in a theoretical analysis. As the sum
of both investigated contributions, the total probe field induced ac-Stark shift is evaluated at
(−2± 6)× 10−22.
A theoretical model for sympathetic Doppler cooling is presented and used to analyze the cooling
dynamics in all phases of the clock spectroscopy sequence. The model predicts ion temperatures
< 0.8 mK during the clock interrogation and, neglecting anomalous heating sources, ≤ 2.5 mK
throughout all remaining phases in the sequence. Based on the results of the temperature anal-
ysis, possible improvements are identified and the spectroscopy sequence is optimized regarding
low ion temperatures and duty cycle.
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1 INTRODUCTION

1 Introduction

The development of precise timekeeping based on atomic references is an ongoing success story.
Starting with the first realization of microwave atomic clocks in 1955, which enabled fractional
frequency uncertainties in the 10−9 region [1], modern clocks based on optical transitions in the
THz to PHz regime are approaching the 10−19 level [2–5].
The continuous improvement over the last decades unlocked more and more application fields
in science and industry. Nowadays, modern optical clocks enable height resolutions in the cm
regime which makes them interesting for geodesy [6] and for the search for new physics beyond
the standard model [7]. In addition, atomic clocks are essential components in telecommunica-
tion networks and global navigation satellite system (GNSS) [8].
Although optical atomic clocks possess systematic uncertainties about two orders of magnitude
smaller than the most precise cesium microwave clocks [9], the definition of the SI-second based
on the primary standard 133Cs has not changed since its introduction in 1967 [10]. Therefore,
many groups all over the world are investigating possible clock species candidates for new fre-
quency standards and a redefinition of the SI-second based on an optical transition [11, 12].
There are two common realizations of an optical clock, namely lattice clocks, where several
thousands of neutral atoms are stored in an optical lattice, and ion clocks, where a single clock
ion is trapped in a radio frequency Paul trap. Both approaches have their benefits. Lattice
clocks feature an intrinsically low instability (or statistical uncertainty) and therefore need less
averaging time τ to reach a desired frequency resolution, while ion traps allow an exceptional
level of control over external perturbations to the internal state energies [13].
A species with favorable properties for highly accurate optical clocks is 115In+ [14]. Besides a
suitably narrow clock transition with a frequency on the order of 1 PHz, it features favorable
properties for the realization of a multi-ion-clock, such as a nearly vanishing quadrupole moment
and a transition for state readout [15]. In a multi-ion clock, multiple clock ions are trapped and
simultaneously probed. The resulting increased signal to noise ratio allows to reduce the aver-
aging time τ by a factor (at least) equal to the number of clock ions N . Therefore, a multi-ion
clock combines advantages of neutral atom lattice and single ion clocks.
Our group follows this approach by trapping multiple ions in a Coulomb crystal. These Coulomb
crystals allow to simultaneously trap ions of different species which then serve different pur-
poses. The indium clock at Physikalisch-Technische Bundesanstalt (PTB) is based on a linear
mixed-species Coulomb crystal, where the 115In+ ions are sympathetically cooled by 172Yb+.
Sympathetic cooling relies on the Coulomb interaction between the ions and the resulting cou-
pled motion of all ions in the trapping potential. When one species is laser cooled, the reduction
of thermal energy is, as a result of the coupling, distributed to all remaining ions in the crystal.
In spring 2022, our clock attended an international clock campaign for the first time [16]. Be-
fore scaling to multiple clock ions, the clock was operated with a single indium ion. During
the campaign, frequency ratios between the 115In+ clock and other contributing optical clocks
were measured. Besides an accuracy improvement of the currently most accurate indium fre-
quency ratio 87Sr/115In+ [17] by about two orders of magnitude, additional new ratios such as
171Yb+/115In+ and 171Yb/115In+ could be determined on the 10−17 to 10−18 level.
To achieve high accuracies in these frequency ratio measurements, a thorough analysis of sys-
tematic frequency shifts and their uncertainties is necessary. This thesis contributes to the
investigation of two contributions. After chapters 2 and 3 review the basic theoretical back-
ground of the content of this work and give an overview of the experimental setup of the 115In+

clock at PTB, a complete analysis of the probe field induced ac-Stark shift is presented in chapter
4. The shift consists of two contributions, the probe field ellipticity-induced shift as presented
by V.I. Yudin [18] and the ac-Stark shift by far off-resonant transitions. The total probe field
induced shift is evaluated at a fractional value of (−2± 6)× 10−22.
One of the largest contribution to the total frequency uncertainty is the time dilation shift due

1



1 INTRODUCTION

to the residual thermal motion of the ions in the trapping potential. In addition, this motion
also increases the statistical uncertainty by the temperature dependent decrease of contrast.
Both motivate a detailed analysis of the ion temperature and its dynamics throughout the clock
spectroscopy sequence. Such an analysis is carried out in chapter 5 based on a theoretical model
of sympathetic Doppler cooling [19]. The model predicts clock ion temperatures < 0.8 mK dur-
ing the clock interrogation and, neglecting anomalous heating by e.g. background gas collisions,
≤ 2.5 mK during all contributing phases of the sequence such as state preparation and readout.
Based on the results of the temperature analysis, the sequence is further optimized to reach
lower ion temperatures and to improve on duty cycle.
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2 THEORETICAL BACKGROUND

2 Theoretical Background

This chapter is structured as follows. Section 2.1 reviews the basic principle of atomic clocks,
followed by an overview over the statistical uncertainty and systematic frequency shifts presented
in 2.2 and 2.3. Section 2.4 introduces the linear Paul trap and a description of the ion motion in
the trapping potential, 2.5 gives a brief introduction on cooling techniques. Lastly, 2.6 presents
a short derivation of the quantum mechanical description of ion-light interaction and a method
to evaluate ion temperatures from experimentally acquired spectroscopic data.

2.1 Principle of an optical atomic clock

The basic principle of atomic clocks is to stabilize a (clock) laser to an atomic reference.
Here the reference is typically an optical electronic (clock) transition with a frequency νA ≈
1014 . . . 1015 Hz which is probed by the laser light field of frequency νL. After probing, the atom
can either be in the ground |g〉 or excited state |e〉. The transition probability p depends on the
frequency difference δν = νL − νA. This detuning δν is kept as small as possible via a feedback
loop. Because it is not possible to completely isolate the atom from its environment, the reference
frequency νA also depends on external influences such as unwanted magnetic or electric fields B
and E. These influences result in systematic frequency shifts δsys/(2π), which shift the unper-
turbed transition frequency ν0 to the experimentally observable frequency νA = ν0 + δsys/(2π).
There are two measures of an atomic clock’s performance. The statistical frequency uncertainty
originates predominantly from the measurement noise when probing the atomic reference. The
systematic frequency uncertainty describes how precise the sum of all systematic frequency shifts
δsys is known. Both are discussed in the following sections.
Currently, the most precise atomic clocks are based on one of two approaches: Lattice clocks,
in which large ensembles of several thousands of neutral atoms are trapped in optical lattices,
and ion clocks, where one or multiple ions are trapped in a radio frequency (rf) Paul trap such
as the 115In+ clock at PTB. For a general overview on optical atomic clocks see e.g. [13].

2.2 Statistical frequency uncertainty

Information on the detuning δν is acquired via repeated population measurements (probing).
Since in every measurement the ion is projected into either |g〉 or |e〉, the gain in information
on δν depends on the number of averaged population measurements. Because every probing
iteration takes a time t, the reduction of δν is a function of the total averaging time τ = Nitt
where Nit is the number of iterations. Therefore, δν(τ) is the dominating contribution to the
statistical frequency uncertainty of an atomic clock. The statistical frequency uncertainty is
fundamentally limited by the quantum projection noise (QPN) [20]. The QPN limited fractional
frequency uncertainty is given by [21]

σy(τ) =
δν(τ)

ν0
=

1

κ

∆ν

ν0

1√
Nions

√
t

τ
∝

√
p(1− p)
Nionsτ

, (2.1)

where κ is a numerical factor on the order of 1, ∆ν is the frequency resolution and Nions is
the number of probed ions. Since the unperturbed clock transition frequency ν0 is an intrinsic
feature of the clock species, the statistical uncertainty is usually given as fractional frequency
uncertainty δν(τ)/ν0 and denoted as σy(τ).
Usually, the QPN limit is not reached in the experiment. The time t needs to be seen as lower
limit for the time tm = t+ td of each iteration. Here td is the dead time, in which the atoms/ions
are e.g. cooled or the clock states are read out. Therefore, to decrease the statistical uncertainty
and hence the instability of the clock, it is advantageous to maximize the duty cycle, which
is defined as the fraction t/tm ≤ 1. Phases in clock operation which contribute to the dead

3



2 THEORETICAL BACKGROUND

time will be presented in section 3.3. In addition, due to a finite temperature of the atoms/ions
during the interrogation, the maximum excitation probability p is limited, as will be shown in
section 2.6.

2.3 Systematic frequency shifts

As mentioned in section 2.1, the experimentally observed clock frequency νA is shifted relative
to the unperturbed frequency ν0 due to systematic frequency shifts δsys. There are multiple
contributions to δsys which need to be evaluated for an atomic clock (see e.g. [13]), three of
which are discussed in this thesis: The Doppler shift, the ac-Stark shift and the 1st order
Zeeman shift.

2.3.1 Doppler Shift

The Doppler shift originates from the motion of the clock ion in the trapping potential (see
section 2.4) relative to the clock laser and can be separated into two contributions, the 1st order
Doppler shift δ1D and the 2nd order Doppler shift (also called time dilation shift) δ2D. The 1st
order Doppler shift results from the motion of the ions along the direction of the clock laser
k−vector kL with |kL|= kL = 2π/λL and the respective wavelength λL. δ1D is given by

δ1D = −kLv = −
2πv‖

λL
= −

2πv‖νL

c
(2.2)

where c is the speed of light, v the ion’s velocity vector and v‖ the projection of v onto kL (see
e.g. [13, 22]). When the ion is cooled sufficiently into the Lamb-Dicke regime, the 1st order
Doppler shift becomes negligible [23].
The 2nd order Doppler shift is caused by time dilation due to the motion of the ion in the
trapping potential and is therefore of relativistic nature. It is given by [13]

δ2D = −〈Ekin〉
mc2

, (2.3)

where 〈Ekin〉 is the mean total kinetic energy, kB the Boltzmann constant and m the mass of
the clock ion. The thermal time dilation shift results from thermal motion and depends on the
mean kinetic energy 〈Ekin〉th (see e.g. [19])

δ2D,th = −
〈Ekin,rad1〉th

mc2
−
〈Ekin,rad2〉th

mc2
−
〈Ekin,ax〉th

mc2
(2.4)

= −κkB〈Trad1〉
2mc2

− κkB〈Trad2〉
2mc2

− kB〈Tax〉
2mc2

, (2.5)

where 〈T 〉 are the mean temperatures corresponding to the motion along the three principal
trap axes in the rf Paul trap and κ ≈ 2 is a correction factor when intrinsic micromotion is
taken into account. The thermal time dilation shift can only be decreased by a reduction of 〈T 〉.
This motivates the analysis and optimization of Doppler cooling in chapter 5. A second relevant
contribution to the time dilation shift is caused by excess micromotion (see [24]), but will not
be discussed within this work.

2.3.2 ac-Stark shift

In a system of two atomic states |g〉 and |e〉 with energies Eg and Ee, the ac-Stark shift is a
consequence of the interaction of an oscillating electric field E with a frequency ω = 2πf (e.g.
from a laser beam) and the electric dipole moment operator d. In case of a large detuning

4



2 THEORETICAL BACKGROUND

∆ = ω − ω0 of the electric field with respect to the transition frequency ω0 = 2πf0 = ∆E/~ =
(Ee − Eg)/~, the ground and excited state experience an energy shift [22]

∆Eg/e,ac−Stark = ±~|Ω|2

4∆
= ±(degE)2

4∆~
, (2.6)

where deg = 〈g|d|e〉 is the dipole matrix element between the states |g〉 and |e〉, Ω = −degE/~
the Rabi frequency (see section 2.6) of the transition |g〉 → |e〉 and E = |E| the absolute value
of the electric field amplitude. A schematic of the respective energy shifts of the ground and
excited state is shown in Fig. 2.1.

Figure 2.1 Ac-Stark shift of the ground and excited state energies assuming ∆ < 0. In the
presence of a far detuned oscillating electric field at frequency ω, the energy levels of the ground
and excited state |g〉 and |e〉 are shifted by the ac-Stark shift ∆Eg/e,ac−Stark relative to the
unperturbed energies Eg and Ee. The shifts are opposite in sign for the ground and excited
state and inversely proportional to the detuning ∆ = ω − ω0 with respect to the unperturbed
transition frequency ω0 = (Ee − Eg)/~.

Eq. 2.6 holds for |∆|� |Ω| and in the rotating wave approximation, where terms oscillating
at (ω + ω0)� ∆ are neglected. For a detailed derivation see e.g. [22, 25].
The impact of this energy shift originating from the probe electric field on the clock transition
frequency will be investigated in chapter 4.

2.3.3 1st order Zeeman shift

The 1st order Zeeman shift originates from the interaction of each clock state magnetic dipole
moment µ with a magnetic field B. For hyperfine states, the energy levels are shifted by [25]

∆E1Z = µBgFmFB, (2.7)

where µB is the Bohr magneton, gF the g−factor, mF the magnetic quantum number and
|B|= B the absolute value of the magnetic field. Since each clock state |g〉, |e〉 has a different
g−factor value gF,g and gF,e, both energy shifts differ from each other. The changed energy
difference then leads to a frequency shift of the clock transitions. A scheme to cancel the shift
is presented in 4.1.1.

2.4 Trapping of ions

The 115In+ clock at PTB is based on trapped ions. This section presents a brief introduction
on the linear Paul trap and gives a derivation of the description of the ion motion.

5



2 THEORETICAL BACKGROUND

To trap ions, it is necessary to produce a 3D confining potential. 3D confinement cannot be
produced by a combination of static electric fields, since the corresponding potential Φ needs to
fulfill Laplace’s equation ∆Φ = 0. Such a combination would always lead to an anti-confinement
in at least 1 direction, as shown in e.g. [26, 27]. To solve this problem, there are two common
approaches to trap charged particles. The first is to combine a static electric quadrupole field
with a homogeneous magnetic field, known as Penning trap (see e.g. [28]). Since this type of
ion trap is not important for this thesis, it will not be further discussed. The second approach
uses an oscillating electric quadrupole field. This approach called Paul trap [29] is also used to
trap ions in the indium clock setup. Its basic theoretical background is given in the following.

2.4.1 Trapping in a linear Paul trap

Confinement in the radial xy−plane of a linear Paul trap is provided by four electrodes, and
depending on the trap setup, two or four end electrodes for the axial confinement along the
z−axis. A schematic of a linear Paul trap in the radial plane is shown in Fig. 2.2.

Figure 2.2 Radial plane of a linear Paul trap. For the radial confinement, an oscillating voltage
Urf × cos(Ωrft) in the radio frequency (rf) regime is applied between the green and the black
electrodes, resulting in an oscillating electric quadrupole potential Φrad(t), schematically shown
by grey lines. The difference between the radial potentials Vrad1/2 along the two radial trap axes
u1 and u2 can be set by the dc voltage Ut. The combination results in a harmonic confining
radial potential Vrad shown by the red equipotential surface (red ellipse).

To produce the radial confinement, an oscillating voltage Urf×cos(Ωrft) with a frequency Ωrf

in the radio frequency (rf) regime is applied to two electrodes shown as green circles in Fig. 2.2.
The setup of all four electrodes then produces an oscillating electric quadrupole potential Φrad(t)
in the radial plane (shown schematically as grey lines). Due to the oscillating sign of Urf , the
trapped ions experience a continuous change between a confining and anti-confining potential,
leading to a harmonic radial confinement described by Vrad, shown schematically by the red
equipotential surface. The force resulting from this potential pushes the trapped ions towards
the center of the ellipse which is the center of the trap. The ellipticity of Vrad can be set by
the applied dc voltage Ut, where the main axes of the ellipse are the radial trap axes u1 and u2.
To create an axial confinement, the dc electrodes are segmented and a voltage Udc is applied
between the grey end electrodes and the black electrodes in Fig. 2.3.

6



2 THEORETICAL BACKGROUND

Figure 2.3 3D schematic of a linear Paul trap. To produce the axial confinement, a dc voltage
Udc is applied between the grey and black electrodes, resulting in a harmonic trapping potential
Vax along the trap axis u3 ‖ z. Depending on the chosen trapping voltages Urf , Ut and Udc,
multiple ions of different species can be trapped in a linear chain as shown by blue and pink
circles.

The applied voltage Udc produces a harmonic trapping potential with a trap frequency ωax =
2πνax along the trap axis u3 ‖ z. Depending on the chosen radial and axial confinement, multiple
ions of different species can be trapped in a linear chain along u3 as a Coulomb crystal (blue
and pink circles).

2.4.2 Motion of a single trapped ion in a linear Paul trap

Before a description of the motion of multiple ions is presented in 2.4.3, this subsection gives a
short derivation of the equations of motion of a single trapped ion in a linear Paul trap which
follows [21]. For a more detailed derivation see [30, 31].
The radial potential Φrad close to the center of the Paul trap is given by

Φrad1 = (κrfUrfcos(Ωrft)− κdcUt)
u2

1

2d
(2.8)

Φrad2 = −(κrfUrfcos(Ωrft)− κdcUt)
u2

2

2d
(2.9)

Φrad = Φrad1 + Φrad2. (2.10)

Here u1,u2 are the coordinates along the two radial trap axes, κrf and κdc are geometric correc-
tions on the order of 1 and d is the radial distance from the center to the electrodes.
It is common to continue with the dimensionless q parameters

q1 = −q2 =
2eκrfUrf

md2Ω2
rf

(2.11)

q3 = 0, (2.12)

and a parameters

a1/2 = −2ω2
ax

Ω2
rf

± 4eκdcUt

md2Ω2
rf

(2.13)

a3 =
4ω2

ax

Ω2
rf

, (2.14)

7



2 THEORETICAL BACKGROUND

where e and m are the charge and the mass of the trapped ion. Using the q and a parameters,
the equations of motion are given by

ük + (ak + 2qkcos(Ωrf)t)
Ω2

rf

4
uk = 0, (2.15)

with k = {1, 2, 3}, known as the homogeneous Mathieu differential equations. An inhomogeneity
∝ Edc = |Edc| needs to be added on the right hand side when external electric stray fields Edc

are present. As the influence of stray fields on the ion motion is not of major interest in this
thesis, the inhomogeneity is neglected in the following. It can be shown that under the condition
|ai|, |qi|� 1, the solution to the set of differential equations in 2.15 can be approximated by

u1/2(t) ≈ u(1),1/2cos(ωrad1/2t)(1 +
q1/2

2
cos(Ωrft + φ1/2)) (2.16)

u3(t) ≈ u(1),3cos(ωaxt+ φ3), (2.17)

with motional amplitudes u(1),k and radial trap frequencies

ωrad1/2 = 2πνrad1/2 =
Ωrf

2

√
a1/2 +

q2
1/2

2
. (2.18)

The fast oscillation at Ωrf in Eq. 2.16 is called intrinsic mircomotion, while the oscillation at
the trap (or secular) frequencies ωrad1/2 and ωax is called secular motion. As can be seen from
Eq. 2.16, the micromotion amplitude is a factor of q1/2/2 smaller than the secular motion. In
the stability regime considered here (|ai|, |qi|� 1), the secular motion can be treated as the
harmonic motion in a static potential

Vtrap =
m

2
ω2

rad1u
2
1 + ω2

rad2u
2
2︸ ︷︷ ︸

Vrad

+
m

2
ω2

axu
2
3︸ ︷︷ ︸

Vax

. (2.19)

2.4.3 Normal modes of a Coulomb crystal

When multiple ions are trapped in a Coulomb crystal, they do not only interact with the trap-
ping potential, but also with each other by means of the Coulomb interaction. As a result, each
ion motion depends on the motion of all remaining ions in the crystal. In a mixed species crystal,
this coupling can be used to sympathetically cool a species without a suitable cooling transition
by another which can be sufficiently cooled. Such a (linear) crystal is shown schematically in
Fig. 2.3 (clock ion (pink) and cooling ions (blue)). Besides a convenient way to cool ions, the
(coherent) manipulation of the coupled motion is the basis of the field of trapped-ion quantum
logic (see e.g. [32, 33]). The collective motion can be described by a set of normal modes. A
derivation of the normal mode structure following [34] is presented in this section.
Due to the Coulomb interaction, the trapping potential in Eq. 2.19 needs to be modified. In-
cluding the Coulomb potential VCoulomb and assuming N ions of masses mi, the total potential
is given by

V =

N∑
i=1

Vtrap(ui,mi) +
1

2

N∑
i=1

N∑
j=1,i 6=j

e2

4πε0

1

|ui − uj |︸ ︷︷ ︸
VCoulomb

, (2.20)

where ε0 is the vacuum permittivity and ui = (u1i, u2i, u3i)
T the position of the ith ion in the

coordinate system defined by the three principal trap axes. It is assumed that the trapping
parameters are chosen such that the ions are arranged in a linear chain (linear Coulomb crystal)
[35], as it is the case in the indium clock setup. Under the assumption of small deviations
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from the equilibrium position vector of each ion u(0)
i = (u

(0)
1i , u

(0)
2i , u

(0)
3i )T , the coordinates can be

replaced by ui(t) = u(0)
i + qi(t) with the time dependent motion qi(t) = (q1i(t), q2i(t), q3i(t))

T .
Now, the potential V given in Eq. 2.20 is expanded to second order around the equilibrium
positions u(0)

i

V ≈ 1

2

3∑
k=1

N∑
i,j=1

qkiqkj

[
∂2V

∂uki∂ukj

]
u

(0)
ki︸ ︷︷ ︸

Vkij

, (2.21)

where ∂/∂uki is the partial derivative with respect to the ith ion coordinate uk. For every
k = {1, 2, 3} and hence for every trap axis, a set of N eigenvalue equation can be found

N∑
j=1

Vkijβkα,j = λkαmiβkα,i. (2.22)

Here α = 1, . . . , N is the mode index, βkα,i is the ith component of the mode eigenvector βkα
and ωkα = 2πνkα =

√
λkα is the mode frequency. To solve the eigenvalue equations in Eq. 2.22,

code written by J. Keller is used throughout this thesis. Once the mode eigenvectors βkα are
found, any motion of the ions in the Coulomb crystal can be expressed as a superposition of
normal mode excitations

πkα =
N∑
i=1

βkα,iqki. (2.23)

To describe the 3N normal mode excitations, there are in total 3N mode frequencies ωkα and 3
sets of N basis vectors {βα}k.
Due to the different masses mi of the ions, the mode eigenvectors βkα are not orthogonal. To
obtain orthogonal sets of eigenvectors, the above derivation needs to be repeated using the
transformation qki → q′ki =

√
miqki and Vkij → V ′kij = Vkij/

√
mimj (see [34]). From this

transformation in the mass-weighted space, normalized eigenvectors β′kα are obtained

|β′kα|=

√√√√ N∑
i

β2
kα,i = 1. (2.24)

These eigenvectors can be transformed back to real space via

β′kα,i → βkα,i =
β′kα,i√
mi
. (2.25)

To give an example of the set of normal modes of a (mixed-species) linear Coulomb crystal
consisting of three Yb+ (blue) and a single In+ (pink), the radial and axial real space mode
eigenvectors βkα are calculated and shown in Fig. 5.3. For the calculation it is assumed that
the secular frequencies corresponding1 to the mass mYb = 172 (amu) of the ytterbium ions are
νrad = 825 kHz and νax = 275 kHz.

1Note the mass dependence in Eqs. 2.13 and 2.18.
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Figure 2.4 Radial and axial normal mode vectors of a linear mixed species Coulomb crystal.
Assuming a four ion crystal consisting of three Yb+ (blue) and one In+ (pink), there are 4
axial modes and 2 × 4 radial modes. The ion displacements from their equilibrium positions
(horizontal lines) are proportional to the real space eigenvector components βkα,i.

Each ion displacement relative to its equilibrium position (shown as horizontal lines) repre-
sents an eigenvector component βkα,i in a radial or axial normal mode α.
In case of small kinetic energies, the normal mode excitations πα need to be treated quantum
mechanically. This is done by introducing the annihilation operators akα of the modes kα such
that the normal mode excitations are given by

πkα =

√
~

2ωkα

(
akα + a†kα

)
. (2.26)

Each mode can then be treated as a quantum mechanical harmonic oscillator with eigenstates
|nkα〉 of the number operator (akα)†akα and discrete energy levels Ekα(nkα)

Ekα(nkα) =

(
nkα +

1

2

)
~ωkα. (2.27)

Here nkα is the occupation number and the energy offset ~ωkα/2 is the ground state energy.
This quantum mechanical treatment will be important to describe the influence of the ion motion
on the time evolution of the two states |g〉 and |e〉 in the interaction with light (see section 2.6).

2.5 Doppler cooling and sympathetic cooling

To keep the trapped ions in the crystallized phase and to reduce temperature related frequency
shifts such as the thermal time dilation shift (see 2.3.1), it is necessary to apply laser cooling. A
commonly used technique is Doppler cooling. It relies on deceleration in the process of photon
scattering on a cooling transition. Assuming a single trapped ion and a cooling laser parallel
to the ion velocity vector v, each absorbed photon changes the ion momentum |p|= m|v| by
∆p = ~k. Here k = 2π/λcool = |k| with the wavelength of the cooling transition λcool and the
cooling laser wave vector k. While the photon absorption is always along the direction of k, the
emission is randomly directed. Therefore, the random direction of the emitted photons results
in a random walk and vanishing average momentum transfer [22].
To effectively cool the ion in the process of photon absorption, it is necessary to have a de-
pendence of the absorption process on the ion velocity |v| and its direction. Since the ion is
oscillating back and forth along the direction of the laser beam, without such a dependence, the
photon’s absorbed momenta would average out. Here the 1st order Doppler shift comes into
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play. Following [31], the average force on the ion due to the photon absorption is proportional
to the scattering rate Γsc given by

F = ~kΓsc = ~k
Γ

2

s

1 + s+ (2δeff
Γ )2

, (2.28)

with the saturation coefficient of the cooling transition s = 2|Ω|2/Γ2, the corresponding Rabi
frequency Ω and the natural linewidth Γ. In addition, the scattering rate also depends on
δeff = ∆0−kv, with the detuning ∆0 = ωL−ωcool of the cooling laser field (frequency ωL) with
respect to the cooling transition frequency ωcool and the 1st order Doppler shift −kv. When
choosing a fixed ∆0 < 0, usually ≈ −Γ/2, the force is larger for motion towards the laser beam.
The imbalance of the scattering force acting on the ion while moving towards or with the laser
beam then leads to cooling.
This scheme is limited by the aforementioned momentum random walk due to the process of
photon emission. The minimum reachable temperature is the well-known Doppler limit obtained
for s→ 0 and for ∆0 = −Γ/2. It is given by (see e.g. [22])

TD =
~Γ

2kB
, (2.29)

where kB is the Boltzmann constant. TD,Yb ≈ 0.47 mK for the 2S1/2 → 2P1/2 transition of
172Yb+ with Γ = 2π × 19.6 MHz (see section 3.1).
A model describing sympathetic Doppler cooling of the normal modes of a linear mixed species
Coulomb crystal will be presented in section 5.1.

2.6 Rabi flopping and thermometry

Atomic clocks are based on excitation of the clock transition via interaction with the clock laser
field. In the interaction, the population is transferred from the ground state |g〉 to the excited
state |e〉 in a coherent way. This process is called Rabi flopping. A short derivation following
[22] is presented in the following.
At first, a free two-level atom at rest interacting with an oscillation electric field is assumed.
The corresponding Hamiltonian consists of two parts

H = H0 +HI(t), (2.30)

where H0 refers to the unperturbed atomic two level system and HI(t) to the time dependent
interaction with the oscillating electric field. HI(t) introduces a perturbation of the eigenstates
|g〉, |e〉 of H0 whose eigenvalues are the corresponding energies Eg and Ee

H0|g〉 = Eg|g〉 (2.31)
H0|e〉 = Ee|e〉. (2.32)

The general solution is given by

Ψ(r, t) ≈ Ψ(t) = cg(t)|g〉e−iωgt + ce(t)|e〉e−iωet, (2.33)

with ωg/e = Eg/e/~, while the dependence on the electron position r is dropped in the dipole
approximation. The approximation is justified by the fact that the spread of the atomic wave
function is small compared to the wavelength of the laser. Since Ψ(t) is normalized, the condi-
tions |cg(t)|2+|ce(t)|2= 1 holds for the amplitudes cg/e. The squared amplitudes |cg/e(t)|2 are
the populations and describe the probability to find the atom in the state |g〉 or |e〉 at time t.
Note that |ce|2≡ p is equivalent to the excitation probability p in an atomic clock experiment
(as used in Eq. 2.1).
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Assuming a linearly polarized electric field E(t) = E0a cos(ωLt) with the polarization vector a,
HI(t) is given by

HI(t) = erE = −dE. (2.34)

Here e is the elementary charge and d = −er the electric dipole operator. HI results in a time
dependence of the populations of |g〉 and |e〉, which can be described by two coupled differential
equations for the amplitudes cg/e(t)

iċg = Ωcos(ωLt)e
−iω0tce (2.35)

iċe = Ω∗cos(ωLt)e
iω0tcg, (2.36)

where ω0 = (Ee−Eg)/~ is the transition frequency of the transition |g〉 → |e〉 and Ω is the (free
atom) Rabi frequency defined by

Ω = −〈g|da|e〉E0

~
= −deg,aE0

~
. (2.37)

deg,a is the dipole matrix element between the two states |g〉 and |e〉 for the component da of
the dipole operator d parallel to the polarization vector a. In the next step, the rotating wave
approximation is applied, where fast rotating terms oscillating at (ωL + ω0) � (ωL − ω0) are
neglected. Assuming initial conditions cg(t = 0) = 1 and ce(t = 0) = 0, the time dependent
populations |cg|2 and |ce|2 can be determined by solving the set of differential equations in
Eqs. 2.35 and 2.36, such that

|ce(t)|2 =
Ω2

Ω2 + ∆2
sin2

(√
Ω2 + ∆2

2
t

)
(2.38)

|cg(t)|2 = 1− |ce(t)|2=
Ω2

Ω2 + ∆2
cos2

(√
Ω2 + ∆2

2
t

)
. (2.39)

In case of resonant excitation, e.g. ∆ ≈ 0, both equations simplify to

|ce(t)|2 = sin2

(
Ω

2
t

)
(2.40)

|cg(t)|2 = cos2

(
Ω

2
t

)
. (2.41)

(2.42)

As can be seen in the interaction of the two level system with the resonant electric field, the
populations are oscillating as a function of the interrogation time t. These oscillations are known
as Rabi oscillations (also denoted as Rabi flopping). When the interrogation time t is chosen to
be τπ = π/Ω, |ce(τπ)|2= 1 and in a state measurement, the atom will be found in the excited
state |e〉 (as can be seen from Eq. 2.33). Here τπ is called π−pulse time.
Until now, the only considered influence on the populations |cg/e|2 was the oscillating electric
field. Since the excited state |e〉 has has a limited lifetime τlife, it is possible that the Rabi
oscillation is damped by the decoherent process of spontaneous emission from |e〉 to |g〉. In case
of resonant excitation and including spontaneous emission, the population |ce|2 can be described
by [25]

|ce(t)|2=
1

2

Ω2

Ω2 + Γ2/2

[
1− e−(3Γ/4)t

(
cos(ΩΓt) +

3Γ

4ΩΓ
sin(ΩΓt)

)]
, (2.43)

with the damped Rabi frequency ΩΓ =
√

Ω2 − (Γ/4)2 and the natural linewidth Γ = 1/τlife of
the transition |g〉 → |e〉. The process of spontaneous emission leads to damping of the Rabi
oscillation (proportionality e−(3Γ/4)t). For large free atom Rabi frequencies |Ω|� Γ and short
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interrogation times t � τlife, the Rabi oscillations are approximately described by Eqs. 2.40
and 2.41. In case of small Rabi frequencies Ω and interrogation times t on the order of the
excited state lifetime τlife, which are both desirable in atomic clocks, spontaneous decay has a
considerable effect on the maximum measured excitation probability p = |ce(t)|2.
So far, the atom was assumed free (without confinement) and at rest. In case of trapped ions in
real experiments, both assumptions are not valid due to the confining potential and the finite
end temperature of the cooling process. Here the excited state time evolution also depends on
the residual motion which is in general described a superposition of Fock states

⊗
kα|nkα〉. The

excited state time evolution in the absence of spontaneous emission (cf. Eq. 2.43) of the ith
probed ion is given by (see [21, 31])

|ce,i(t)|2=
3∑

k=1

∞∑
nk1,...,nkN=0

(
N∏
α=1

Pkα(nkα)

)
sin2

(
Ω

2

N∏
α=1

µnkα,n′kαt

)
, (2.44)

where Pkα(nkα) is the thermal occupation of the state |nkα〉 and

µnkα,n′kα,i = 〈n′kα|eiηkα,i(akα+a†kα)|nkα〉 (2.45)

= e−
1
2
η2
kα,i

√
nkα<!

(nkα< + ∆nkα)!
(iηkα,i)

∆nkαL∆nkα
nkα<

(η2
kα,i). (2.46)

Here ∆nkα = |n′kα − nkα|, nkα< = min{nkα, n′kα}, Lαn(x) is a generalized Laguerre polynomial
and ηkα,i is the Lamb-Dicke parameter [36], defined by

ηkα,i = kLcos(θ)︸ ︷︷ ︸
kL,kα

β′kα,i

√
~

2miωkα
. (2.47)

The Lamb-Dicke parameter describes the influence of the ion motion on the interaction with
the laser field. The cosine dependence describes the projection |kL,kα|= kL,kα of the probe field
k−vector kL onto the mode principal axes. Following [37], in thermal equilibrium, the thermal
occupation Pkα(nkα) can be expressed in terms of the mean mode occupation number n̄kα of
each mode kα

Pkα(n̄kα, nkα) =
1

n̄kα + 1

(
n̄kα

n̄kα + 1

)nkα
. (2.48)

Since each mode is treated as an 1D harmonic oscillator whose total energy is kBT , the mean
occupation number can be connected to a mode temperature Tkα via

Tkα =
~ωkαn̄kα
kB

. (2.49)

By combining Eqs. 2.44, 2.48 and 2.49, an expression for the ith probed ion excited state time
evolution as influenced by three sets of mode temperatures {Tα}k is obtained.
From Eq. 2.44 one can see that in presence of motion, the excited state time evolution is a
sum of (infinetly) many Rabi oscillations with different amplitudes and frequencies. This be-
havior is called thermal dephasing and results in a mode temperature dependent decrease of
the maximum excitation probability. The higher the mode temperatures Tkα, the broader the
distributions Pkα and the faster the dephasing of all oscillations. Therefore, low temperatures
are desirable to reduce the effect of thermal dephasing and to keep a high maximum excitation
probability.
The temperature dependence allows to estimate the ion temperature by comparison of experi-
mentally observed Rabi flops with calculated oscillations assuming an excited state population
given by Eq. 2.44. This method is used throughout this thesis to determine mode temperatures
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Tkα as well as free atom Rabi frequencies Ω from experimental data. The calculation of the-
oretical thermally dephasing on resonance Rabi oscillations is done using a modification of a
python script written by J. Keller. Besides the effect of thermal dephasing, the script also takes
into account the effect of decoherence by spontaneous emission decribed in Eq. 2.43. The script
assumes projections kL,kα onto the two radial axes and no projection onto the modes of the trap
axis, as it is the case for the probe beam in the indium setup (see section 3.2). Moreover, for
simplicity, it is assumed that all modes of a radial trap axis are at the same temperature. Since
there are two radial trap axes, two radial temperatures Trad1 and Trad2 can be entered.
To give an example, three Rabi flops for different radial temperatures and a fixed free atom
rabi frequency Ω/(2π) = 50 Hz are plotted in Fig. 2.5. For the calculation, the crystal con-
figuration as well as mode frequencies corresponding to the mode structure shown in Fig. 5.3
are assumed. Moreover, it is assumed that the probe beam is at the indium clock transition
wavelength λclock ≈ 236.5 nm and has an equal projection onto both radial trap axes, leading to
θ = 45◦ in the calculation of the Lamb-Dicke parameters (see Eq. 2.47).
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/(2 ) = 50 Hz, Trad1 = 2 mK, Trad2 = 2 mK

Figure 2.5 Thermally dephasing Rabi oscillations. Three theoretical Rabi flops (solid lines) are
calculated assuming an equal projection of the probe beam onto the modes of both radial trap
axes and no projection onto the axial modes. The resulting maximum excitation decreases with
increasing radial temperatures. The peak excitations are reached for pulse times τpulse > τπ =
10 ms.

As can be seen, higher assumed radial temperatures reduce the maximum excitation. In
addition, a free atom would reach its maximum excitation probability after the π−time τπ =
π/Ω = π/(2π×50Hz) = 10 ms. The oscillations resulting from the considered radial temperature
sets reach their maximum excitations for pulse times τpulse > τπ, which is a result of the different
thermal distributions Pkα(n̄kα).
Due to a missing projection of the probe beam onto the axial modes in the indium clock setup, it
is not possible to deduce corresponding temperatures from experimentally acquired Rabi flops.
This motivates the theoretical temperature analysis of the axial and radial temperatures in
chapter 5.
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3 Experimental Setup

This chapter presents the relevant parts of the experimental setup of the 115In+ clock at PTB.
Section 3.1 gives an overview over the atomic systems of the used species. Afterwards, the ion
trap setup is presented in section 3.2 followed by the clock spectroscopy sequence used in the
spring 2022 clock campaign.

3.1 Atomic systems

The clock is based on 115In+, trapped together with 172Yb+ sympathetic cooling ions in a linear
Coulomb crystal. Reduced level schemes with all relevant transitions are shown in Fig. 3.1.

Figure 3.1 Reduced level schemes of 115In+ (a) and 175Yb+ (b) with branching ratios. Spectro-
scopic data taken from [21].

3.1.1 172Yb+

The transition 1S1/2 → 2P1/2 at λ370 ≈ 370 nm in 172Yb+ is used for sympathetic Doppler
cooling (see Fig. 3.1 b)). It has a natural linewidth of Γ370/(2π) = 19.6 MHz and is addressed
by 3 beams named H1, H2 and V as shown in Fig. 3.2 of the next section. Since the 2P1/2 excited
state decays with a probability of ≈ 0.7% to the long lived 2D3/2 state, it is necessary to create
an alternative decay channel. This is done by a repumping beam at λrepump ≈ 935nm which
drives the 2D3/2 → 3[3/2]1/2 transition, whose excited state then decays with a probability of
98% back to the ground state.

3.1.2 115In+

A reduced level scheme is shown in Fig. 3.1 a). The clock transition is the highly forbidden 1S0 →
3P0 transition at λclock ≈ 236.5 nm with a narrow natural linewidth of Γclock/(2π) = 820 mHz. In
principle, the clock transition is forbidden in all multipole orders. But since 115In has a nuclear
spin I = 9/2, there is weak magnetic dipole hyperfine coupling between the excited state 3P0 and
neighboring states 3P1 and 1P1. This coupling leads to a non-vanishing electric dipole moment
between the two clock states 1S0 and 3P0 and an excited state lifetime τlife(

3P0) = 0.195(8) s
[38, 39]. The half integer nuclear spin also introduces a 1st order Zeeman shift sensitivity (see
subsection 2.3.3) of the clock transitions. As the ground and excited state are J = 0 states,
there will be one F = J + I = 9/2 hyperfine state for each clock state and hence no insensitive
mF = 0 Zeeman substates. To cancel the 1st order Zeeman shift, both stretched state (clock)
π−transitions |1S0,mF,g = ±9/2〉 → |3P0,mF,e = ±9/2〉 are probed in the presence of a bias
magnetic field B and the corresponding transition frequencies are averaged. This scheme is
presented in 4.1.1.
To detect whether the indium ion is in the ground or excited state of the clock transition and
also to prepare it in the extremal substates |1S0,mF,g = ±9/2〉 before the clock interrogation,
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the detection transition 1S0 → 3P1 at λ230 ≈ 230.6 nm with Γ230/(2π) = 360 kHz is used.
The detection is done with the electron shelving technique [40]. When the ion is in either of
the |1S0,mF,g = ±9/2〉 states, fluorescence is observable on the closed |1S0,mF,g = ±9/2〉 →
|3P1,mF,e = ±11/2〉 stretched state transition. When the ion is in the excited state, it remains
dark. To drive these ∆mF = ±1 σ±−transitions, the detection light needs do be circularly
polarized with respect to B, using an electro optical modulator (EOM). By switching between
right and left handed circular polarization, the ion can be optically pumped from one extremal
mF,g = ±9/2 state to the other mF,g = ∓9/2.

3.2 Ion trap setup

Since the experimental setup is well documented in e.g. [21, 41–45], this section only gives a
short overview over selected parts of relevance for this thesis. A reduced schematic of the ion
trap setup including all relevant components is shown in Fig. 3.2.

Figure 3.2 Reduced experimental ion trap setup. a) xz−plane and b) xy−plane.

3.2.1 Ion trap

To trap both indium and ytterbium ions in a linear Coulomb crystal, a segmented linear Paul
trap is used [41]. The trap is designed especially for clock operation and features e.g. low
heating rates as presented in section 5.1.3. It consists of four stacked gold coated aluminium
nitride chips and has eight trapping segments. The trap axis is aligned parallel to the z−axis,
as is the bias magnetic field B, see Fig. 3.2 a), the radial trap axes thus lie in the xy−plane
(Fig. 3.2 b)). Besides the electrodes for the axial and radial confinement shown schematically in
Fig. 2.3, there are two additional dc-electrodes in each segment which allow to manipulate the
orientation of the radial trap axes with respect to the y−axis [41]. The orientation is described
by the angle θ. The influence of θ on sympathetic cooling will be analyzed in chapter 5.

3.2.2 Chamber and magnetic field coils

To isolate the ions from the environment and to reduce collisions with background gas molecules
which result in unwanted heating, the ion trap is mounted inside a vacuum chamber in ultra
high vacuum (UHV) at a pressure pvac ≈ 10−11 mbar. The chamber is made of titanium to
avoid magnetization and hence to reduce unwanted magnetic stray fields. To produce the bias
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magnetic field B and to compensate for residual magnetic stray fields, three orthogonal pairs of
Helmholtz coils are used (see Fig. 3.2 a)).

3.2.3 Laser setup

The clock laser used to probe the indium ion is a Nd:YAG solid state laser at 4λclock ≈ 946 nm.
The laser beam is frequency quadrupled by two second harmonic generation (SHG) stages to
produce resonant probe light at λclock ≈ 236.5 nm [46]. To ensure long coherent interrogation
times, the laser is stabilized to a 30 cm ultra low expansion (ULE) cavity at room temperature
and can optionally be transfer locked to the cryogenic silicon cavity at PTB [47]. The probe
beam is aligned parallel to the y−axis (see 3.2 b)) and has no projection onto the trap axis (and
the corresponding normal modes). The resulting orthogonality to B is necessary to address both
stretched state clock (π−)transitions.
To produce the indium detection light at λ230 ≈ 230.6 nm, light of an external cavity diode
laser (ECDL) at 4λ230 ≈ 922 nm is frequency quadrupled by two SHG stages. As the clock
laser, the ECDL is stabilized to a (second) 30 cm ULE cavity. To create left or right handed
circularly polarized light with respect to B, an EOM is used. The EOM allows to switch the
polarization within short times as required for clock operation. The resulting circularly polarized
indium detection beam is aligned anti parallel to B (see Fig. 3.2 a)) as required to address σ±−
transitions. For further detailed information on the detection laser setup, see [43].
The ytterbium Doppler cooling laser at λ370 ≈ 370 nm and the repumping laser at λrepump ≈
935nm are commercial systems and stabilized using a wavemeter lock.
While there is a single rempumping beam parallel to the z−axis, there are three ytterbium
Doppler cooling beams. Two of these beams, named horizontal 1 (H1) and horizontal 2 (H2),
lie in the xz−plane and have an angle of ϕ ≈ ±23◦ relative to the z−axis (see Fig. 3.2 a)). The
third, vertical, beam (V) is directed parallel to the y−axis. As it is relevant for section 3.3 and
chapter 5, H1 and V have a fixed power ratio PH1/PV = 0.1. Both beams are sampled from a
single beam using a polarizing beam splitter (PBS), the power ratio is set by a λ/2−wave plate.
Furthermore, both beams have a fixed ratio sH1/sV ≈ 0.3 between the saturation coefficients
sH1 and sV. When both beams are switched on simultaneously, the total saturation coefficient
of the ytterbium ions seff = sH1 + sV.2 The fixed saturation ratio results from the fixed power
ratio between both beams and different saturation powers Psat,V/H1. Here Psat,V/H1 is the power
of each laser needed to reach a saturation of s = 1. The saturation powers were measured to be
Psat,V ≈ 20.7µW and Psat,H1 ≈ 7.2µW [49]. Therefore, the ratio becomes

sH1

sV
=
PH1

PV
×
Psat,V

Psat,H1
=

1

10
× 20.7

7.2
≈ 0.3. (3.1)

H1 and V are the main cooling beams, H2 is solely used for specific purposes within the spec-
troscopic sequence as will be presented in the next section 3.3.

3.2.4 Detection system

To detect the fluorescence of indium and ytterbium, a detection system comprised of a lens
system, photo multiplier tubes (PMT, one for indium, one for ytterbium) and an EMCCD
camera is used (shown schematically in Fig. 3.2a)). The camera allows to analyze the crystal
configuration within the spectroscopic sequence, meaning the order of species in the linear chain.
The PMTs are used to analyze the amount of scattered photons on the ytterbium Doppler cooling
and indium detection transition. The EMCCD camera is the key element of the indium state
detection, because it allows to evaluate individual scattering rates of all ions in the crystal. This
is a necessary feature for multi-ion clock operation. By setting a threshold count rate, the indium

2Since the saturation coefficient s ∝ I, individual saturation coefficients add up [48].
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ion is detected dark (in the 3P0 excited state, measured camera count rate below threshold) or
bright (in the 1S0 ground state, count rate above threshold). The detection system is presented
by T. Nordmann et al. in [44].

3.3 Clock sequence for the spring 2022 clock campaign

During the 2022 spring campaign, a single indium ion was trapped together with three ytterbium
ions in the configuration (Yb-In-Yb-Yb/Yb-Yb-In-Yb) (mirror images of a configuration yield
the same mode structure and are therefore equivalent). Since every interrogation of the indium
ion and following detection yields a binary information (|e〉, ion appears dark or |g〉, observable
fluorescence on the detection transition), the measurement needs to be repeated multiple times
to evaluate an excitation probability p ≡ |ce|2. p is approximated by the fraction

p ≈ ndark

Ntotal
, (3.2)

where ndark is the number of measurements the indium ion is found in |e〉 and Ntotal is the total
number of measurements. Ntotal is usually on the order of 10 (locking) or 100 (transition scans
and Rabi flops).

Figure 3.3 Clock spectroscopy sequence used in the spring 2022 clock campaign.

This section presents the Clock spectroscopy sequence used during the spring clock campaign
to probe the clock ion and to evaluate p. The clock sequence consists of four branches as shown
in Fig. 3.3. Which branch is used depends on specific decisions which are made during the
sequence. Since every phase requires exact timing, the complete sequence is controlled by an
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FPGA. Each branch and the corresponding phases are explained in the following.

Independent of the branch, the sequence starts with an 8 ms ytterbium detection. In this
phase, the Doppler cooling beams H1 and V are switched on simultaneously at saturations
sV = 1 and sH1 ≈ 0.3sV. Due to the fixed ratio sH1/sV, only the saturation sV is mentioned in
the following. Along with the Doppler cooling beams, the repumping beam is always switched
on. In this detection phase, a reference image of the whole Coulomb crystal is taken using the
EMCCD camera for the following reason: Collisions with background gas molecules can lead
to heating of the crystal. As a result, the configuration can change (wrong order within the
linear chain), molecular ions can form (e.g. YbH+) which appear dark, the crystal melts (not
crystallized in a linear chain, appears dark) or ions are "kicked" out of the trapping potential.
These cases need to be detected as they require special actions which are described below. In
the next phase, the indium ion is optically pumped for 1 ms in either of the extremal Zeeman
states mF,g = ±9/2 using the indium detection transition and circularly polarized light at λ230.
The saturation coefficient of the indium detection beam is s230 ≈ 4, sV is lowered to sV = 0.5.
To account for the Zeeman shift of the mF,g/e substates of the detection transition, the laser
frequency is ramped. In parallel to the optical pumping phase, the ytterbium reference image
is evaluated. If the configuration is valid, e.g. in Yb-In-Yb-Yb or its mirror image, the next
phase is a 20 ms indium detection. In this phase, an image of the indium ion is taken. This
phase ensures that the indium ion appears bright and is hence in the ground state. If it appears
dark, the ion is either in the excited state (not decayed back into |g〉 after the last clock inter-
rogation) or a collision happened. After the indium detection, the 50 ms sympathetic Doppler
cooling phase starts with sV = 1. The phase consists of two sub-phases, 25 ms where sV is held
constant (named constant s phase), and afterwards 25 ms where sV is ramped down linearly to
0 (named ramped s phase). The idea behind the saturation ramp is a further reduction of the
temperature due to the saturation dependence of the end temperature of the cooling process
(as will be subject of chapter 5). In parallel to the cooling phase, the indium reference image is
evaluated. If the ion appears bright, it is prepared in |g〉 and the clock transition can be probed
in the next phase. During the τprobe = 150 ms clock pulse, all laser beams except for the probe
beam at λclock are blocked by mechanical shutters. This is done to avoid additional ac-Stark
shifts of the clock transition. The residual ac-Stark shift due to the probe beam will be subject
of chapter 4. In addition, due to the low heating rates of the ion trap, it is not necessary to do
laser cooling during the pulse. After the clock pulse, the clock states are read out in a 20 ms
indium detection. This completes branch 1. The result of the indium detection is recorded
(either ndark or nbright and Ntotal is increased by 1) and the sequence starts from the beginning.

The branch 2 accounts for the case, that in the first Indium detection, the indium ion ap-
peared dark. Therefore, the clock transition is not probed and the sequence restarts.

Branches 3 and 4 account for the case that during the ytterbium detection phase, an in-
valid configuration was detected. Invalid configuration means either of the above mentioned
consequences of a collision. When all ytterbium ions appear bright in the reference image, the
configuration changed and the crystal is reordered to the desired configuration. In addition,
since these cases indicate an increased, suboptimal clock ion temperature, the binary result of
the previous clock interrogation will be neglected in the evaluation of p. In the following 300 ms
reordering phase, H1 and V are switched off, H2 is switched on at maximum saturation sH2.
The reordering process is documented in [42] and presented by T. Nordmann et al. in [50]. This
ends branch 3.

If an invalid configuration is detected and in addition, at least one ytterbium ion appears
dark, the 100 ms rescue phase starts. Here H1 and V are switched off, H2 is switched on at max-
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imum saturation and its frequency is ramped to account for high ion temperatures and hence
high 1st order Doppler shifts (see Eq. 2.28). In addition, the indium detection beam is switched
on at maximum saturation s230 to account for the case of molecular ion formation. Due to its
high photon energies ~ω230, the indium detection beam can dissociate molecular bonds. The
rescue phase ends branch 4, and hence completes the clock sequence.

From branch 1, which uses a total time of tbranch1 = td + τprobe = 249 ms with a dead time
td = 99 ms, a duty cycle of

τprobe

tbranch1
≈ 0.6 (3.3)

is obtained. This duty cycle needs to be seen as a lower limit, since branches 2-4 do not lead to
a clock interrogation and therefore add dead time.
The clock sequence will be modeled, analyzed and optimized regarding the ion temperatures in
chapter 5.
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4 Analysis of probe field induced ac-Stark shifts

The ac-Stark shift results from non-resonant interaction of the probe field with the electric
dipole moment of the clock ions. This interaction then leads to energy shifts of the atomic
levels and hence a frequency shift of the clock transition. Therefore, a thorough analysis is
necessary for precise atomic clocks. In this chapter, the analysis of probe field induced ac-Stark
shifts for the 115In+ clock at PTB are presented. The chapter is structured as follows. In 4.1,
a yet unconsidered contribution to the ac-Stark shift is analyzed. The section is based on the
investigation of V. I. Yudin et al. in [18]. In 4.2, the ac-Stark shift by far off-resonant transitions
is determined. Finally, in 4.3 the total probe field induced ac-Stark shift is evaluated followed
by a summary of the results of this chapter in 4.4.

4.1 Probe field ellipticity-induced ac-Stark Shift

This section presents the results of the analysis of the probe field ellipticity induced ac-Stark
shift. At first, 4.1.1 gives a derivation of the shift as presented by Yudin et al. [18]. In 4.1.2,
experimental imperfections are estimated to do a first comparative analysis of the magnitude of
the shift for different clock species, which is done in 4.1.3. Lastly, in 4.1.4 and 4.1.5 the shift is
determined for the 115In+ clock at PTB based on clock spectroscopy of the relevant transitions.

4.1.1 Theoretical background

In [18] V. I. Yudin et al. have presented a yet unconsidered contribution to the ac-Stark shift
which occurs especially in atomic lattice and ion clocks based on the highly forbidden 1S0 → 3P0.
The authors have shown that the shift originates from the presence of an uncontrolled elliptical
polarization of the probe field as well a misalignment of the applied bias magnetic field. Besides
115In+, further examples of clocks using this transition are 87Sr and 171Yb lattice clocks as
well as 27Al+ ion clocks. All the mentioned clock species feature a half integer nuclear spin
I, which, as mentioned in section 3.1, introduces a 1st order Zeeman shift sensitivity due to
missing |mF = 0〉 substates in the F = I manifolds of the 1S0 ground and 3P0 excited state.
The common solution to circumvent the 1st order Zeeman shift sensitivity is by probing both
stretched state (clock) transitions |F,mF,g = ±F 〉 → |F,mF,e = ±F 〉 in the presence of a bias
magnetic field B and averaging their respective transition frequencies ω−F−F and ω+F+F . Due
to the magnetic field, the energies of the ground and excited Zeeman substates are shifted by

∆E1Z,g = ggµBmF,gB (4.1)
∆E1Z,e = geµBmF,eB (4.2)

where µB is the Bohr magneton, gg/e the ground and excited state g− factors and B = |B| (see
e.g. [25]). The energy shift is shown schematically in Fig. 4.1 for a model species with positive
gg and ge, which can be seen by a downwards shift of Zeeman substates with negative projection
mF .
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Figure 4.1 Clock transition Zeeman structure in the presence of a bias magnetic field B. Due to
the 1st order Zeeman shift, the substates with projections mF,g/e = {−F,−F + 1, ..., F − 1, F}
are split by the energy difference ~∆g/e. To cancel the shift, both clock transitions (i.e. |mF,g =
±F 〉 → |mF,e = ±F 〉, shown as bold green arrows) are probed and their respective frequencies
ω+F+F and ω−F−F are averaged. Figure taken with permission of V. I. Yudin from [18].

This energy shift results in a frequency shift of both clock transition frequencies ω−F−F and
ω+F+F

ω−F−F = ω0 − (∆e −∆g)F (4.3)
ω+F+F = ω0 + (∆e −∆g)F, (4.4)

where ω0 is the unperturbed transition frequency for a vanishing magnetic field B and ∆g and
∆e are defined as

∆g =
∆E1Z,g

mF,g~
=
ggµBB

~
(4.5)

∆e =
∆E1Z,e

mF,e~
=
geµBB

~
. (4.6)

From Eqs. 4.3 and 4.4 it can be seen that for both stretched state transitions the 1st order
Zeeman shift is equal in magnitude but opposite in sign. Therefore, when taking the average of
ω−F−F and ω−F−F

ω−F−F + ω+F+F

2
=
ω0 − (∆e −∆g)F + ω0 + (∆e −∆g)F

2
= ω0 (4.7)

the resulting frequency is equal to the unperturbed transition frequency and hence free of the
1st order Zeeman shift.
This picture only holds under perfect experimental conditions, where the probe field Eprobe is
linearly polarized and B is oriented parallel to Eprobe, such that only ∆mF = 0 π−transitions are
driven. Under real experimental conditions, the electric field polarization as well as the magnetic
field orientation are not perfectly controllable. As shown in Fig. 4.2 a), these experimental
imperfections can lead to a certain degree of ellipticity of the probe field, described by the
polarization unit vector a. The ellipticity of a can be represented using the angular parameter
ε by

a = cos(ε)e′x + isin(ε)e′y, (4.8)
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where e′x,y are the unit basis vectors of the 2D Cartesian coordinate system pointing along the
principal axes of the polarization ellipse (shown in red). Moreover, as shown Fig. 4.2 a) and b),
the magnetic field can have a misorientation with respect to the main axis of the polarization
ellipse (parallel to e′x) described by the angles ϕ and ξ. Here ξ = ∠(e′x,n

(ell)
B ) with n(ell)

B the
projection of nB = B/B onto the x′y′−plane.

Figure 4.2 Probe field ellipticity as result of experimental imperfections. a) An elliptical polar-
ization of the probe field Eprobe is described by the polarization unit vector a where the angle ε
in the polarization ellipse (red) is a measure for the amount of ellipticity. b) Besides an elliptical
polarization, experimental imperfections can result in a misorientation of the bias magnetic field
B with respect to the x′y′−plane (see a)) and the x′−axis described by the angles ξ and ϕ
respectively.

Assuming a certain degree of ellipticity and an arbitrary orientation of B, Eprobe can be
expressed as

Eprobe(t) = <(Eprobee
−iωprobea) =

Eprobee
−iωprobea + c.c.

2
(4.9)

where ωprobe is the probe field angular frequency (usually close to ω0) and Eprobe = |Eprobe|.
Here it is convenient to define a in a different basis such that

a =
∑

q=0,±1

a(q)eq (4.10)

where e0 = ez, e± = ∓(ex±iey), with the unit basis vectors ex,y,z of the 3D Cartesian coordinate
system.
Since there is now a circular component in the probe field as well as a small projection of the
magnetic field onto the direction nk of the probe laser k−vector, there is coupling between the
clock transition’s extremal substates (| |mF |= F 〉) and neighboring substates | |mF |= F − 1〉 as
highlighted by red arrows in Fig. 4.3.
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Figure 4.3 Clock transition Zeeman structure in the presence of experimental imperfections. Due
to a certain degree of ellipticity of the probe field, besides the coupling between the extremal
Zeeman substates ||mF,g/e|= F 〉 described by the clock transition Rabi frequency |Ω0|, there is
now coupling to the neighboring ||mF,g/e|= F − 1〉 states described by the σ±−transition Rabi
frequencies |Ω±|. The σ+− and σ−− transitions (corresponding to |Ω+| and |Ω+| respectively)
are shown by the thin red arrows. Figure taken with permission of V. I. Yudin from [18].

The coupling to the neighboring substates is described by the two σ−transition Rabi fre-
quencies |Ω±| whose absolute values are defined by

|Ω±|=
|deg,FEprobea

(±1)|
~

1√
F + 1︸ ︷︷ ︸

:=cCG,±

, (4.11)

while the coupling between the extremal substates is described by the clock transition Rabi
frequency |Ω0| with

|Ω0|=
|deg,FEprobea

(0)|
~

√
F√

F + 1︸ ︷︷ ︸
:=cCG,0

. (4.12)

Here deg,F = 〈Fg||d||Fe〉 is the reduced dipole matrix element of the clock transition and the
factors including the total angular momentum F are the respective Clebsch-Gordan coefficients
cCG,0/±.
Due to the coupling |Ω±|, both clock transition frequencies ω−F−F and ω+F+F are affected by
individual ac-Stark shifts δ−F−F and δ+F+F according to

ω−F−F = ω0 −
︷ ︸︸ ︷
(∆e −∆g)F +

︷ ︸︸ ︷
δ−F−F (4.13)

ω+F+F = ω0 + (∆e −∆g)F︸ ︷︷ ︸
Zeeman

+ δ+F+F︸ ︷︷ ︸
ac−Stark

(4.14)

where the ac-Stark shifts are given by

δ−F−F =
|Ω+|2

4∆e
− |Ω−|

2

4∆g
(4.15)

δ+F+F =
|Ω+|2

4∆g
− |Ω−|

2

4∆e
, (4.16)
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which holds for |∆e,g|� |Ω±|. When both transition frequencies in Eqs. 4.13 and 4.14 are again
averaged

ω−F−F + ω+F+F

2
= ω0 + δ(el−ind)

ac , (4.17)

one can see that there is an additional term δ
(el−ind)
ac to the unperturbed transition frequency ω0

which Yudin et al. call, due to its origin, the ellipticity induced shift. It is given by

δ(el−ind)
ac =

δ−F−F + δ+F+F

2

=
∆g + ∆e

8∆g∆e
(|Ω+|2+|Ω−|2). (4.18)

Because usually |Ω±|� |Ω0| (as will be shown in section 4.1.4) and |Ω0| typically being the more
easily accessible quantity, it is convenient to express δ(el−ind)

ac in terms of |Ω0|. Using Eqs. 4.11
and 4.12, the right hand side of Eq. 4.18 can be rewritten as

δ(el−ind)
ac = |Ω0|2

∆g + ∆e

8F∆g∆e

|a(+1)|2−|a(−1)|2

|a(0)|2
. (4.19)

Now the factor including the components a(±1;0) can be expressed in vector notation as

|a(+1)|2−|a(−1)|2

|a(0)|2
=
i([a× a∗] · nB)

|a · nB|2
(4.20)

where × and · denote the vector and scalar product of two vectors. It can be shown further that

i([a× a∗] · nB) = sin(2ε)sin(ξ) (4.21)

such that equation Eq. 4.18 can be written as

δ(el−ind)
ac = |Ω0|2

∆g + ∆e

8∆g∆e

sin(2ε)sin(ξ)

|a · nB|2
. (4.22)

Under use of Eqs. 4.5 and 4.6, the absolute of δ(el−ind)
ac can be expressed as

|δ(el−ind)
ac | = |Ω0|2

∆Z

|∆2
g −∆2

e|
8F |∆g∆e|

|sin(2ε)sin(ξ)|
|a · nB|2

(4.23)

=
|Ω0|2

∆Z

|g2
g − g2

e

8F |ggge|
|sin(2ε)sin(ξ)|
|a · nB|2

(4.24)

with ∆Z = |∆g −∆e|. Finally, under the assumption |ε, ξ, ϕ|� 1 (which is usually the case in
atomic clock experiments), the following small angle approximation can be used

sin(2ε) ≈ 2ε

sin(ξ) ≈ ξ
|a · nB|2 ≈ 1− ε2 − ϕ2 − ξ2 ≈ 1,

leading to the final form of the shift presented in [18]

|δ(el−ind)
ac |≈ A |Ω0|2

∆Z
|εξ|, (4.25)

where the parameter A is defined as

A =
|g2
g − g2

e |
4F |ggge|

. (4.26)
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Having a closer look at Eq. 4.25, the ellipticity induced shift can be separated into two parts. On
one hand, there is the parameter A depending on ground and excited state g−factors and the
total angular momentum F = I. Therefore, it is completely determined by atomic properties
and hence a feature of the chosen clock species. It can be seen as measure for the species’
intrinsic shift sensitivity. The remaining terms |Ω0|2, ∆−1

Z and |εξ| depend on experimental
conditions. While |Ω0|2 and ∆Z can be measured directly during clock operation, experimental
imperfections described by the angles ε and ξ need a separate analysis. In the next subsection,
estimates for ε and ξ found in the literature and also experimentally determined are presented.

4.1.2 Estimate of experimental imperfections ε and ξ

To find estimates for ε and ξ, it is important to understand the mechanisms from which these
imperfections originate. As shown in the previous subsection, ξ describes a misorientation of
the bias magnetic field B. In most clock setups, B is produced by three orthogonal pairs of
Helmholtz coils (see 3.2). In principle, due to the orthogonality of the coils, the orientation of
B can be chosen freely. In the 115In+ setup, the bias magnetic field Bz is oriented along the
experiment’s z−axis. A schematic of the vacuum chamber in the indium setup with mounted
Helmholtz coils together with the desired orientation of the bias magnetic field Bz is shown in
Fig. 4.4.

Figure 4.4 Potential magnetic field misorientation due to manufaturing tolerances of Helmholtz
coil mounts in the Indium clock setup. The coils (brown) to produce the bias magnetic field
Bz are mounted at the vacuum chamber (grey) by coil mounts (dark grey). Manufacturing
tolerances ∆s = ±2 mm in the mount positioning can lead to a tilt of the Helmholtz coils
(shown by the red tilted bar). This tilt results in a misorientation of Bz by the angle ε with
respect to the experiment’s z−axis. The resulting magnetic field points in the direction of B′.
Using ∆s and assuming a misplacement of the coil mounts shown by the small red arrows, the
worst case misorientation is estimated to be ε ≈ 0.87◦. The technical drawing is used with
permission of T. Nordmann.

There are always imperfections in the manufacturing process of, e.g., the positioning of
drilled holes for the coil mounts. Here the uncertainty of the desired positions of the drilled
holes is given by ∆s ≈ ±2 mm [49]. Assuming the worst case, the drilled holes of the upper and
lower mounts of the coils producing Bz are horizontally displaced by ∆s in opposite directions.
This situation is shown schematically in Fig. 4.4 by the small red arrows (not to scale). These
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displacements will then lead to a tilt of both coils (shown by the red tilted bar) and hence a tilt
of Bz in the direction of B′. The resulting worst case misorientation ξ can then be calculated
using the vertical distance between the drilled holes d = 264 mm via

ξ = arctan(
2∆s

d
) ≈ 2∆s

d
=

2× 2 mm

264 mm
≈ 0.0152 rad (≈ 0.87◦). (4.27)

Estimates for ξ can also be found in the literature. In [51], Lange et al. present a scheme
to suppress second-rank tensor frequency shifts in atomic clocks by rotating the applied bias
magnetic field during the dark time of a Ramsey interrogation. The authors give an uncertainty
of the desired magnetic field orientation θ of u(θ) ≡ ξ = ±1◦ ≈ 0.0175 rad. Tan et al. demon-
stated an even smaller uncertainty of ξ = u(θ0) = 0.4◦ ≈ 0.007 rad in [52], where the electric
quadrupole shift is minimized by aligning the bias magnetic field to a specific angle θ0 ≈ 54.7◦.
Both publications show that possible uncertainties of the magnetic field orientation are on the
order of ξ ≈ 1◦ or ≈ 0.0175 rad. Although Tan et al. demonstrate a smaller uncertainty, such a
precise alignment is restricted to the specific angle θ0 for which the quadrupole shift vanishes.
The experimental conditions which Lange et al. face in the presented scheme come closer to
the requirements regarding a arbitrarily chosen B-field orientation. Therefore, also taking into
account the results of the estimate for misorientation due to manufacturing tolerances in the
indium setup ξ ≈ 0.87 deg, for the first analysis of the ellipticity induced shift ξ is estimated to
be

ξest ≈ 0.0175 rad (1◦). (4.28)

ε describes the ellipticity of the polarization vector a and hence of the probe field. Usually, an
elliptical polarization is introduced by propagation of a light wave through birefringent mate-
rials. Since both orthogonal components of the incident wave face different refractive indices,
the propagation through the material introduces a phase shift φ between the two orthogonal
components. When φ = nπ with n ∈ Z, the light is linearly polarized, otherwise elliptically or
circularly polarized. Elements in atomic clock experiments which show a certain birefringence
and hence introduce an unwanted ellipticity are e.g. vacuum windows.
To estimate the impact of vacuum windows on the probe fields polarization, the experimental
setup shown in Fig. 4.5 is used.

Figure 4.5 Measurement setup to determine ε as a result of birefringence in vacuum windows.
After passage of the 230 nm beam through the 1st polarizer, its polarization in linear. After
passing the two vacuum windows, both orthogonal components of the beam’s electric field have
acquired a relative phase shift φ resulting in an elliptical polarization. The magnitudes of both
components are then analyzed using the 2nd rotatable polarizer by measuring minimum (Pmin)
and maximum (Pmax) transmitted powers. From the ratio of both measured powers, the angle
ε ≈ 9.92◦ can be estimated.

For the whole measurement, the In+ detection beam path is used, since the wavelength λ230

is close to the clock laser wavelength at λclock ≈ 236.5nm. Therefore, the impact of birefringent
materials on the polarization is comparable for both wavelength. The idea behind this setup is

27



4 ANALYSIS OF PROBE FIELD INDUCED AC-STARK SHIFTS

as follows. Before the beam is reflected to the vacuum windows, it passes the 1st polarizer. This
polarizer ensures that the beams polarization is linear, such that every change in polarization
can be traced back to the following elements. After passing the dichroic mirror, the two vacuum
windows of the chamber and the second mirror in front of 2nd polarizer, the light has acquired
a phase φ. This phase might lead to a certain degree of elliptical polarization parametrized
by ε, which is analyzed in the following way. At first, the transmitted power P through the
2nd polarizer is measured using the power meter. By rotating the polarizer around the axis
defined by the incident beam, a defined maximum Pmax ∝ Imax and minimum Pmin ∝ Imin of
the transmitted power can be found, where Imin/max are the respective minimum and maximum
intensities. These powers correspond to the absolute values of the electric field components
|Ex′ |∝

√
Imax and |Ey′ |∝

√
Imin aligning with the principal axes of the polarization ellipse as

shown in Fig. 4.6.

Figure 4.6 Polarization ellipse of the probe field after passage through vacuum windows. The
beam’s electric field can be decomposed in the two orthogonal component Ex′ and Ey′ . The
ellipticity parameter ε can then be calculated from the ratio Ex′/Ey′ which is determined using
the measurement setup shown in Fig. 4.5. Figure by analogy with Fig. 4.2 a), originally taken
from [18].

After subtracting a measured background power Pbg, the ratio of the minimum and maximum
transmitted power, is calculated to be

Pmin − Pbg

Pmax − Pbg
=
Imin

Imax
=
|Ey′ |2

|Ex′ |2
= 0.030± 0.001, (4.29)

where the given ratio is the mean of three power ratio measurements. The uncertainty of 10−4

is the observed signal when the measurement is repeated using the two polarizers without any
optical element in between. Here an upper bound for the ratio of ≈ 1.6× 10−4 � 0.03 is found
which is sufficiently small compared to the measured ratio given in Eq. 4.29. From Fig. 4.6,

ε = arctan(
|Ey′ |
|Ex′ |

) ≈
|Ey′ |
|Ex′ |

. (4.30)

The measured power ratio in Eq. 4.29 can be used to determine ε

ε ≈

√
|Ey′ |
|Ex′ |

= (0.173± 0.003) rad (= (9.92± 0.19)◦). (4.31)

A similar measurement procedure is used to determine the residual ellipticity produced by
an EOM without applied voltage. In the indium setup, an EOM is used to create circularly
polarized 230 nm light for the detection of indium and for optical pumping (see 3.2.3). This
measurement is of interest, because there are considerations to guide the clock laser overlapped
with a 230 nm beam through an EOM. Such a setup could be necessary to employ direct radial
laser cooling of indium. During clock interrogation, the EOM would be switched off (i.e. with-
out applied voltage) since there is no indium detection/cooling light needed during the clock
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pulse (see Fig. 3.3), but its impact on the clock laser polarization needs to be determined ex-
perimentally. The used experimental setup consists of an EOM placed between two polarizers,
the measurement is carried out in the same way as for the vacuum windows. Here a power ratio
between 1/60 and 1/70 is measured, leading to an angle ε ≈ 0.13 rad (≈ 7.4◦).
Experimental estimates for ε are also reported in the literature. In [53], Nemitz et al. give an
upper bound for the vacuum window induced ellipticity of a 759 nm lattice laser used in a 171Yb
lattice clock (clock transition at 578 nm). The authors determine ε by comparison of the clock
transition Rabi frequency |Ω0| and the Rabi frequency |Ω+/−| of the σ−transitions (see [53]).
This comparison yields ε ≤ 0.024π ≈ 0.075 rad (≈ 4.3◦).
The measurement procedure of Nemitz et al. to determine ε is the most significant of the three
given estimates, since it analyzes the polarization inside the vacuum chamber at the location
of the atoms/ions. In the vacuum window measurement in the indium setup, the polarization
is analyzed after passage of the probe beam through two vacuum windows and after reflection
at (dichroic) mirrors. Hence the measured angle ε is a result of multiple phase shifts by each
optical component. In principle, the polarization state inside the chamber is completely un-
known. There is the same issue with the EOM measurement, which should rather be seen as an
orientation of the device’s impact on the polarization in future setups. To make a conservative
estimate for ξ, which most likely overestimates than underestimates the probe field ellipticity,
the mean of the values found in [53] and determined in the vacuum window measurement for
the indium setup are calculated. Therefore, ε is estimated to be

εest = 0.124 (≈ 7◦). (4.32)

Since estimates for both experimental imperfections are found (ξest and εest) the factor |εξ|est

needed for a first shift analysis is given by

|εξ|est= |ε|est|ξ|est≈ 2× 10−3. (4.33)

To summarize the results, all found estimates for ξ and ε are gathered in Tab. 1.

Table 1 Summary of estimates for ξ and ε.

angle in rad in deg reference

ξ 0.00152 0.87 this work (manufacturing tolerances)
ξ 0.0175 1 [51]
ξ 0.07 0.4 [52]

ξest 0.0175 1

ε 0.173 9.92 this work (measurement vacuum windows)
ε 0.13 7.4 this work (measurement EOM)
ε 0.075 4.3 [53]

εest 0.124 7.1

As mentioned, all the given values represent just an orientation for the first analysis presented
in the next subsection. For the indium setup, a deeper analysis of the factor |εξ| based on clock
spectroscopy is presented in 4.1.4.

4.1.3 Estimate of the ellipticity induced shift for different clock species

In this subsection, the shift is determined for different optical clocks using the previously found
estimate and experimental data found in the literature. For the investigated clock species 171Yb,
87Sr, 27Al+ and 115In+, publications of following experiments are used: Yb lattice clock at NIST
[4], Sr lattice clock at JILA [3], Al+ clock at NIST [2] and In+ clock at PTB (Mehlstäubler
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group).
As can be seen from Eq. 4.25 and 4.26, besides the clock transition ground and excited state
g−factors gg and ge as well as the nuclear spins I = F for the determination of A, the Rabi
frequency |Ω0| during Rabi interrogation and the frequency ∆Z for all clocks need to be found.
Using g−factor values given in [54–56] and nuclear spins I given in [18], A is calculated 3. To
estimate the respective Rabi frequencies |Ω0|, the probe times τprobe,Rabi during Rabi interro-
gation given in the referenced publications are used. Here it is assumed, that the probe time
corresponds to a π−pulse such that |Ω0|≈ π/τprobe,Rabi. To determine ∆Z in the In+ and Al+

ion clocks, g−factors, nuclear spins and Eq. 4.26 are used. For the Sr and Yb lattice clocks,
the frequency difference ∆ω = |ω−F−F − ω+F+F | between both clock transitions is published in
[3] and [4], from which ∆Z = |∆ω|/(2F ) can be calculated (see Eqs. 4.3, 4.4 and the definition
of ∆Z). Finally, the shift is calculated using Eq. 4.25 as well as the fractional frequency shift
using the clock transition frequencies νclock(calculated from the clock wavelength λclock reported
in the referenced publications). A summary of all used parameters and calculated shifts as well
as used references is given in Tab. 2.

Table 2 Gathered parameters and calculated estimates of the ellipticity induced shift for different
clock experiments.

115In+ (PTB) 27Al+ (NIST)[2] 87Sr (JILA)[3] 171Yb (NIST)[4]

F [18] 9/2 5/2 9/2 1/2

A[18] 0.045[38] 0.209[54] 0.053[55] 0.85[56]

λclock (nm) 236.5 267 698 578
νclock (THz) 1267.4 1123.6 429.8 519.0
τprobe,Rabi (ms) 150 150 600 560

Ω0 (s−1) 20.9 20.9 5.24 5.61
B (G) 1.07 1.2 0.57 1

∆Z (Hz) at B 480[38] 1989[54] 62 399

∆Z (Hz) at 1 G 449[38] 1657[54] 108 399
|εξ| 0.002 0.002 0.002 0.002

|δ(el−ind)
ac | (µHz) 2.1 2.3 1.1 3.4
|δ(el−ind)

ac |
νclock

(10−21) 1.6 2.1 2.9 6.5

In the following, the influence of the respective clock species and experimental parameters as
well as the resulting shifts in the investigated experiments are briefly analyzed and compared.
At first, all four species show significant differences in the intrinsic shift sensitivity represented by
the parameter A which enters the shift linearly. While the values of In+ and Sr are on the same
order, Al+ has a ∼ 4 times higher sensitivity. A special species regarding the intrinsic sensitivity
is Yb whose A parameter is ∼ 20 times larger compared to that of In+. This can be explained
by the small value of F , which leads to a high suppression of the clock transitions relative to
the |∆mF |= 1 σ−transitions via the Clebsch-Gordan coefficients (as can be seen by comparing
the respective Rabi frequencies |Ω0| and |Ω±| in Eqs. 4.12 and 4.11). Moreover, Al+ shows the
largest value of ∆Z at a given magnetic field, which is advantageous due to |δ(el−ind)

ac |∝ ∆−1
Z . As

it is the case for most frequency shifts, Al+ and In+ also profit from high transition frequencies
considering the resulting fractional frequency shifts. Regarding experimental parameters, since
|δ(el−ind)

ac |∝ |Ω0|2∝ τ−2
probe, long interrogation times as used in the Yb and Sr clock experiments

are favorable.
The calculated fractional frequency shifts are in the low to mid 10−21 region for all considered
clock experiments, while the indium clock shows the smallest shift with a fractional value of

3The calculated values for A are also published in [18].
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1.6×10−21. It is followed by Al+ (2.1×10−21), Sr (2.9×10−21) and finally Yb with 6.5×10−21.
For a comparison of the influence of different clock interrogation schemes the interested reader
may consult [18].
In the next subsection, a more precise estimate for |εξ| will be determined experimentally by
clock spectroscopy. Afterwards, the final evaluation of the shift in the indium clock using the
found experimental estimate for |εξ| is presented.

4.1.4 Experimental estimate of |εξ| for the 115In+ clock

In subsection 4.1.2, individual estimates for the angles ε and ξ were found. Since these estimates
originate from different clock setups and in addition differ from each other by a factor of ≈ 2 in
some cases (see Tab. 1), they cannot be used without assuming a proper uncertainty. Therefore,
a way to determine an upper bound for the product |εξ| based on clock spectroscopy in the
115In+ setup is presented in this subsection.
At first, it is necessary to express |εξ| in terms of parameters which can be measured experimen-
tally. As shown in subsection 4.1.1, the absolute value of the ellipticity induced shift can be ex-
pressed in terms of the clock transition Rabi frequency |Ω0| (Eq. 4.25). Since ∆g/e = gg/eµBB/~
(Eqs. 4.6 and 4.5), Eq. 4.25 can be written as

|δ(el−ind)
ac |=

|∆2
g −∆2

e |
4F |∆g∆e|

|Ω0|2

∆Z
|εξ|= |(∆g + ∆e)(∆g −∆e)|

4F |∆g∆e|
|Ω0|2

∆Z
|εξ| (4.34)

where the binomial theorem was used in the last step. On the other hand, the shift can also be
expressed in terms of the σ−transition Rabi frequencies |Ω±| by taking the absolute of Eq. 4.18

|δ(el−ind)
ac |=

∣∣∣∣∆g + ∆e

8∆g∆e

∣∣∣∣× ||Ω+|2−|Ω−|2|. (4.35)

From Eqs. 4.34 and 4.35 one can find∣∣∣∣∆g + ∆e

8∆g∆e

∣∣∣∣× ||Ω+|2−|Ω−|2|=
|(∆g + ∆e)(∆g −∆e)|

4F |∆g∆e|
|Ω0|2

∆Z
|εξ|, (4.36)

which can be reduced using ∆Z = |∆g −∆e| and expressed as

||Ω+|2−|Ω−|2|
2

=
|Ω0|2

F
|εξ| (4.37)

⇔ ||Ω+|2−|Ω−|2|
|Ω0|2

F

2
= |εξ|. (4.38)

Thus, |εξ| only depends on the clock transition Rabi frequency |Ω0| and both σ−transition Rabi
frequencies |Ω±|. All three quantities can be found experimentally by observing Rabi oscillations
on the respective transitions.
Such an experiment is carried out as follows. At first, both clock transitions need to be scanned,
namely the |F = 9/2,mF,g = ±9/2〉 → |F = 9/2,mF,e = ±9/2〉 transitions, which are denoted
as π± in the following. This is for the determination of |Ω0|, as well as the bias magnetic field B.
The value of the applied field is needed to to calculate the frequencies of the two σ-transitions
|F = 9/2,mF,g = ±9/2〉 → |F = 9/2,mF,e = ±7/2〉 (denoted as σ∓) with frequencies ωσ∓
relative to the unperturbed clock transition frequency |ω0|. As shown in subsection 4.1.1, both
clock transition frequencies ω−F−F and ω+F+F are affected by the 1st order Zeeman shift due
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to the magnetic field (see Eqs. 4.3 and 4.4). From the frequency difference ∆ν,π

∆ν,π =
ω−F−F − ω+F+F

2π
= ν−F−F − ν+F+F

= ν0 −
∆g −∆e

2π
F − (ν0 +

∆g −∆e

2π
F )

= 9(gg − ge)
µBB

h
(4.39)

with F = 9/2 and ν0 = ω0/(2π), the magnetic field B can be directly calculated via

B =
∆ν,πh

9(gg − ge)µB
. (4.40)

For the determination of ∆ν,π line scans of both π-transitions are done with a probe field intensity
Ilow leading to a π-pulse time of τpulse ≈ 150 ms. Afterwards, both line scans are fitted with the
fit function

f(ν) = a× sinc(b(ν − ν0))2 (4.41)

where a, b and ν0 (the center frequency) are free fit parameters. Since the two center frequencies
ν−F−F and ν+F+F are now found, their frequency difference is calculated to be ∆ν,π ≈ (4298.30±
0.18) Hz (uncertainty from fitting). Figure 4.7 shows the fitted line scans, where the frequency
axes are adjusted to give frequencies relative to the uperturbed clock frequency ν0.

Figure 4.7 Line scans of the π+ (a) and π− (b) clock transitions. Experimental data (green)
aquired using a probe field intensity Ilow and a pulse time τpulse ≈ 150 ms is fitted (solid red line)
to find the transition’s center frequencies νπ± from which the frequency difference is calculated to
be ∆ν,π = νπ−−νπ+ ≈ (4298.30±0.18) Hz. All frequencies are given relative to the unperturbed
clock transition frequency ν0 for B = 0 G.

With the frequency difference ∆ν,π, B can now be calculated using Eqs. 4.40 and g-factor
values given in [38]. It yields B ≈ (1.065± 0.017)× 10−4 T = (1.065± 0.017) G. As can be seen
from Eqs. 4.3 and 4.4, the 1st order Zeeman shift of both clock frequencies is equal in magnitude
but opposite in sign. Hence, its absolute value is given by ∆ν,π/2
Next, line scans of both σ±-transitions are acquired. To do the scans, it is nescessary to deter-
mine their relative center frequencies νσ+ and νσ−. These relative frequencies are equal to the
respective 1st order Zeeman shifts for the calculated magnetic field B. The shifts (or relative
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frequencies) can be calculated by

νσ± = ∓(
(F − 1)∆e

2π
− F∆g

2π
) (4.42)

= ∓(
7

2

∆e

2π
− 9

2

∆g

2π
)

≈ ±(679± 15) Hz

where again g−factor values given in [38] were, from which the given uncertainty mainly origi-
nates.
Frequency scans are performed around these frequencies. Since both Rabi frequencies |Ω±| are
assumed to be small (because of a small ellipticity of the probe field), the scans are acquired
using a probe beam intensity Ihigh and a probe time of τprobe = 150 ms. This intensity leads
to a π-pulse time of τπ ≈ 10 ms when probing the π±-transitions as will be shown later in the
analysis of |Ω0|. The resulting scans of the σ− and σ+ transitions are shown in Fig. 4.8, the
calculated center frequencies νσ+/− of both transitions are highlighted as red vertical lines.

Figure 4.8 Frequency scan around the σ− (a) and σ+ (b) transitions. A broad frequency scan
is performed around the calculated center frequencies νσ+/− = ±(679 ± 15) highlighted as red
vertical lines. The data points (green) are acquired using a probe field intensity Ihigh and pulse
time τ = 150 ms. Both scans do not show a line shape and the measured excitation is most
likely given due to detection noise. For further analysis of the transition’s Rabi frequencies |Ω±|,
the data point highlighted by the black arrow in b) is used as an upper bound for the maximum
measured excitation of ≈ 0.03.

Both lines are scanned in a frequency interval of at least νσ+/− ± 18.5 Hz and resolution of
1.2 Hz. As can be seen, there is no significant excitation and the transitions can not be clearly
located. The measured signal is most likely given by detection noise, such that it is not possible
to clearly distinguish between noise and an actual transition signal. For further analysis of the
σ−transition’s Rabi frequencies |Ω±|, the maximum measured signal of ≈ 0.03 acquired in the
σ+ transition scan (see Fig. 4.8 b)), highlighted by the black arrow, will be used as an upper
bound for the excitation.
To verify that both σ−transitions are not shifted out of the scanned frequency interval during
the time tmeasure ≈ 85 min between the determination of their respective center frequency (by
determination of B via the π−transition scans) and the actual frequency scan, it is important
to analyze possible frequency drifts. There are two significant drifts which need to be taken
into account. One is a magnetic field drift which directly affects the transitions via the 1st
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order Zeeman shift. The other one is a frequency drift of the cryogenic silicon cavity at PTB
(see [47]) to which the clock laser is transfer locked. Its value is ν̇Silicon ≈ 120µHz/s (private
communication with authors of [47]). To find an estimate for a possible magnetic field drift
rate Ḃ, clock servo B-field data shown in Fig. 4.9 and aquired over a month in the spring clock
campaign is analyzed.

Figure 4.9 Magnetic field fluctuations during the spring clock campaign. To estimate a magnetic
field drift during the total measurement time tmeasure, clock servo magnetic field data (blue) is
analyzed. The data points were acquired during the spring clock campaign over a month. The
data points highlighted in red show the largest continuous magnetic field drift on a timescale
comparable to tmeasure and are used for the drift evaluation. Using these datapoints, the drift
rate can be estimated to be Ḃ < 4µG/s

For the estimation of the drift rate, the data highlighted red is taken into account since it
shows the steepest continuous drift on a timescale comparable to tmeasure. From the highlighted
data, two data points separated in time by tmeasure are chosen to estimate the drift rate. This
is done by simply dividing the difference between their respective magnetic field values (∆B ≈
18µG) by their time difference (∆t = tmeasure) such that ∆B/∆t = Ḃ ≈ 4µG/s. Using this
rate, the maximum shift of the magnetic field is given by Ḃ × tmeasure ≈ 20.4 mG resulting in
an upper bound for the 1st order Zeeman shift of |∆νB|≤ 13 Hz (calculation by analogy with
Eq. 4.42).
To evaluate the frequency shift originating from the silicon cavity drift |∆νSilicon| one needs
to take into account that the probe beam frequency drifts with 4ν̇Silicon. Here the factor of
4 originates from the generation of the probe field by two frequency doubling processes. The
shift is then calculated to be |∆νSilicon|= 4ν̇Silicontmeasure ≈ 2.5 Hz. An upper bound for the
total frequency shift due to both drift contributions can then be estimated to be |∆νdrift|≤
|∆νB|+|∆νSilicon|= 15.5 Hz. Because the uncertainty of νσ+/− is σ(νσ+/−) = ±15 Hz, the total
uncertainty of the transition’s frequencies is given by the sum of σ(ν0,σ+/−) and the above
calculated shift |∆νdrift| and yields (±15 Hz) + (±15.5 Hz) = ±30.5 Hz. This is a crucial result,
since it shows the possibility that both σ-transitions were not actually in the scanned intervals
which are minimum ν0,σ+/−± 18.5 Hz. Therefore, about 1/3 of the frequency intervals in which
the transitions could be located are not covered by the performed scans.4

4The used scans were originally not acquired to exactly fit the purpose of this analysis. Unfortunately, due
to indium loading problems, the scans could not be repeated throughout the process of writing this thesis.
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Here it needs to be mentioned that the estimation of possible line shifts is very pessimistic and
assumes the worst case scenario of possible drifts. Moreover, the by far largest contribution to
the uncertainty of the calculated σ-transition frequencies originates from the uncertainty of the
excited state g-factor ge reported in [38], which is currently the most accurate literature value.
Nevertheless, to be completely certain about the validity of the acquired data, the frequency
scans of the σ-transitions should be repeated with a scanning range of at least ±30.5 Hz.
In the following, the Rabi frequencies |Ω0| and |Ω±| are evaluated using the above data. For the
analysis of |Ω0|, experimentally acquired data of Rabi oscillations on one of the clock transition is
compared to the theoretical model of thermally dephasing Rabi oscillations presented in 2.6. The
assumed temperature of the modes along the radial axes with νrad1 and νrad2 are Trad1 = 0.42 mK
and trad2 = 0.73 mK as found in the clock sequence temperature analysis presented in 5.2.2. The
projection of the clock laser onto the radial trap axis with νrad1 (see Fig. 3.2 b)) is assumed to
be θ = 30◦ [49].
The data was acquired using the probe field intensity Ihigh which was also used in the frequency
scan of the σ-transitions. This experiment was done on a different day, but under comparable
experimental conditions as for the transition scans shown above. In Fig. 4.10 the data is shown
together with plots of the theoretical model for different Rabi frequencies |Ω0|/(2π).
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Figure 4.10 Rabi oscillations on the clock transition. To evaluate the Rabi frequency |Ω0|,
experimental data (black) acquired using a probe field intensity Ihigh are plotted together with
a theoretical model for thermal dephasing Rabi oscillations (solid lines), which is described in
detail in 2.6. The model assumes that all modes referring to the secular frequencies νrad1/2 are
at temperatures Trad1 = 0.42 mK and Trad1 = 0.73 mK as found in the clock cycle temperature
analysis in section 5.2.2. The solid orange line fits the data points best, the two other solid lines
(blue and green) are plotted to estimate the uncertainty of |Ω0|/(2π).

The resulting Rabi oscillations which agree best with the experimental data are shown as
solid orange line. It refers to a Rabi frequency |Ω0|/(2π) = 53 Hz yielding a π-pulse time
of τπ = π/|Ω0|≈ 9.4 ms. The two other theoretical Rabi oscillations shown as solid green
(|Ω0|/(2π) = 56 Hz) and blue (|Ω0|/(2π) = 49 Hz) lines are plotted to estimate the uncertainty
of |Ω0|/(2π). For both frequencies there is a significant deviation from the experimental data,
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especially for long probe times (i.e. τprobe > 30 ms). The largest Rabi frequency difference (here
between the frequencies of oscillations shown by the blue and orange lines) is given by 4 Hz, such
that |Ω0|/(2π) = (53± 4) Hz.
For the evaluation of the σ-transitions Rabi frequencies, the upper bound of ≈ 0.03 for the
excitation is used, which was found in the σ+-transition, see Fig. 4.8 b). The evaluation of the
corresponding Rabi frequency Ω+/(2π) is done by analogy with the previous determination of
|Ω0|/(2π). Since the experimental conditions are the same as for probing of the π-transitions,
only the Rabi frequency is adjusted such that the theoretical model agrees with the ≈ 3%
excitation for the used 150 ms pulse time. The result is shown in Fig. 4.11.
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Figure 4.11 Theoretical Rabi oscillations on σ+-transition. To find an estimate for |Ω+|/(2π),
the data point (black) showing the maximum measured excitation in line scan of the
σ+−transition (see Fig. 4.8 b)) is plotted together with the theoretical model for thermally
dephasing Rabi oscillations (solid lines). Except for an adjusted Rabi frequency, the parameters
assumed in the model are the same as for the evaluation of the clock transition Rabi frequency
|Ω0|. The Rabi frequency |Ω+| is adjusted such that the model fits the the data point (solid
orange line) and the borders of the point’s uncertainty interval (blue and green lines).

The solid orange line fits the data point best, referring to oscillations with a Rabi frequency of
|Ω+|/(2π) = 0.58 Hz. In addition, Rabi oscillations for frequencies of 0.38 Hz and 0.73 Hz (blue
and green lines) are plotted which match the borders of the data point’s uncertainty interval.
These frequencies are acquired to estimate an uncertainty for |Ω+|/(2π). This uncertainty is
again calculated by the maximum frequency difference between |Ω+|/(2π) = 0.58 Hz and the
frequencies of the two other plotted oscillations such that |Ω+|/(2π) = (0.58± 0.20) Hz.
Since an upper bound of |Ω+| is now found, an upper bound for |εξ| can be evaluated, describing
the worst case of polarization impurities during clock operation. For this, it is conservatively
assumed that the ellipticity of the probe field is purely right handed. This assumption leads to
a vanishing coupling between the two states |F = 9/2,mF,g = 9/2〉 and |F = 9/2,mF,e = 9/2〉
and therefore vanishing |Ω−|. As a result, |εξ| maximizes and hence the shift, as can be seen in
Eqs. 4.38 and 4.25. Moreover, it allows to rewrite Eq. 4.38 as

|Ω+|2

|Ω0|2
F

2
≥ |εξ|. (4.43)

Using the above values for |Ω+|/(2π) and |Ω0|/(2π) as well as F = 9/2, the upper bound for
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|εξ| yields
|εξ|max≤ (2.7± 1.9)× 10−4. (4.44)

In the next subsection the shift will be evaluated for the indium setup based on the aforemen-
tioned results.

4.1.5 Evaluation of the ellipticity induced shift for the 115In+ clock

After an upper bound for |εξ| was found in the previous subsection, there are only experimental
parameters left to calculate an upper bound for the ellipticity induced shift given in Eq. 4.25.
For the bias magnetic field, a value of B = (1.07±0.06) G is assumed, which is derived from the
mean value of the data shown in Fig. 4.9. The uncertainty is given by the maximum measured
magnetic field difference. Now, ∆Z can be calculated with g−factor values given in [38]. Lastly,
the Rabi frequency during clock spectroscopy needs to be determined, since the yet determined
frequency |Ω0| ≡ |Ω0,high| refers to the probe field intensity Ihigh, while Ilow was used during
the spring clock campaign. This conversion is done using Ω0,high/(2π) = (53 ± 4) Hz and the
ratio Ihigh/Ilow = 134±2.3, where the ratio is determined from respective intensity stabilization
setpoints. Since the ratio of the Rabi frequencies at Ihigh and Ilow is given by

Ω0,high

Ω0,low
=

deg,FEhigha
(0)
√
F

~
√
F+1

deg,FElowa(0)
√
F

~
√
F+1

=
Ehigh

Elow
=

√
Ihigh

Ilow
, (4.45)

where the definition of |Ω0| in Eq. 4.12 was used, Ω0,low/(2π) can be calculated via

Ω0,low

2π
=

Ω0,high

2π
√

Ihigh

Ilow

≈ (4.6± 0.3) Hz. (4.46)

Using these values, the A parameter from Eq. 4.26, the definition of ∆Z and Eq. 4.25, the upper
bound for the shift yields

|δ(el−ind)
ac,max |

2π
≤
|g2

g − g2
e |

4F |ggge|
|Ω0,low|2

2π|geµB |B|~ − ggµB |B|
~ |

|εξ|max≈ (0.5± 0.4)µHz, (4.47)

resulting in a fractional frequency shift (using νclock = 1267 THz) of

|δ(el−ind)
ac,max |

2π × νclock
≤ (4± 3)× 10−22. (4.48)

Although Yudin et all. propose in [18] to include the absolute shift in the evaluation of atomic
clock uncertainty budgets (and hence the evaluated value in Eq. 4.48), this is done differently
for the indium budget because of the following reasoning.
Since polarization impurities are introduced by, e.g., temperature fluctuations in birefringent
materials, it is likely that the angle ε and hence the orientation of the ellipticity varies over time.
Therefore it is assumed that the upper bound for |Ω+| is also an upper bound for |Ω−|. Moreover,
in the transition scan of the σ− transitions (see Fig. 4.8) it is not possible to distinguish detection
noise from an actual signal produced by the driven transitions. The only statement which can be
made is that {|Ω+|/(2π), |Ω−|/(2π)} ∈ [0, 0.58] Hz. Therefore the σ−transition Rabi frequencies
used for the shift evaluation are |Ω+,mean|= |Ω−,mean|= |Ω+|/2 = 0.58/2 Hz. The uncertainty
is chosen to be u(|Ω+/−,mean|) = ±0.29 Hz such that the uncertainty interval overlaps the full
range of possible σ−Rabi frequencies [0, 0.58] Hz. Note that |Ω±|= 0 Hz is also included in the
uncertainty interval to account for the case of a vanishing shift, i.e. for a linearly polarized probe
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field. In addition, there is the uncertainty of the determination of |Ω+|/(2π) of ±0.20 Hz which
needs to be added in quadrature such that

Ω+mean

2π
=

Ω−mean

2π
= (0.3± 0.4) Hz

These assumptions lead to a vanishing factor |εξ| and therefore to a vanishing shift. Now, |εξ|
yields

|εξ|= (0± 2.3)× 10−4. (4.49)

Using this, the shift is reevaluated to be

δ
(el−ind)
ac

2π
= (0± 0.5)µHz (4.50)

while the fractional shift yields

δ
(el−ind)
ac

2π × νclock
= (0± 4)× 10−22. (4.51)

4.2 Ac-Stark shift by far off-resonant transitions

This section presents the results of the analysis of the ac-Stark shift by far off-resonant tran-
sitions. 4.2.1 gives a brief overview over the origin othe the shift. Afterwards, the shift is
determined in 4.2.2 for the 115In+ clock at PTB based on theoretical considerations.

4.2.1 Theoretical background

In general, every off-resonant transition including either the 1S0 ground state or the 3P0 excited
state of the clock transition results in an ac-Stark shift of the respective clock states. For large
detunings ∆ = ωprobe−ω0, where ωprobe is the probe field frequency and ω0 the frequency of the
off-resonant transition, the ac-Stark shift of the ground state of this transition is given by [22]

∆Eg, off−res =
~|Ω|2

4∆
=

(degEprobe)
2

4∆~
. (4.52)

Here deg is the dipole matrix element of the respective off-resonant transition and Eprobe the
electric field strength of the probe field as presented in 2.3.2. In principle, also the energy shift
of the excited state needs to be taken into account, if one of the clock states is the excited
state of an off-resonant transition. But for the 3P0 excited state, there is no such transition as
will be presented in the next section. Since the clock transition frequency is calculated via the
energy difference between the two clock states ωclock = ∆Eclock/~ = (Ee−Eg)/~, in presence of
coupling Ω, each energy shift of one of the levels directly results in a frequency shift

δ(off−res)
ac = ±

∆Eg, off−res

~
= ±|Ω|

2

4∆
. (4.53)

Here the sign of the respective frequency shift depends on the sign of ∆ and whether the ground
or excited state of the clock transition is shifted. For example, when the off-resonant transition
is blue detuned relative to the clock transition (ωclock < ω0) and includes the clock transition
ground state (e.g., the 1S0 → 3P1 indium detection transition), the ground state is shifted to
smaller energies, leading to a larger energy difference ∆Eclock. Hence the related frequency shift
has a positive sign. On the other hand, if the off-resonant transition is blue detuned including
the excited state of the clock transition (e.g. 3P0 → 3D1), its energy is also shifted to a smaller
value which results in a reduced energy difference ∆Eclock and to a negative frequency shift.
The total ac-Stark shift by far off-resonant transitions is then given by the sum of the ac-Stark
shifts originating from all parasitic transitions

δ
(off−res)
ac,total =

Noff−res∑
i=1

δ
(off−res)
ac,i . (4.54)
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4.2.2 Evaluation of the ac-Stark shift by far off-resonant transitions

For the evaluation the ac-Stark shift by far off-resonant transitions δoff−res
ac , the probe field

strength during clock interrogation Eprobe and the dipole matrix elements deg as well as the
respective detunings ∆ of the investigated transitions need to be determined. For the determi-
nation of Eprobe, the previously determined Rabi frequency |Ω0,low| (Eq. 4.46) can be used. The
Rabi frequency of the clock transition is given as defined in Eq. 4.12 by

|Ω0|=
|deg,FEprobea

(0)cCG,0|
~

, (4.55)

where deg,F = 〈Fg||d||Fe〉 is the reduced dipole matrix element and cCG,0 the respective Clebsch-
Gordan coefficient. From Eq. 4.12 one finds

Eprobe =
~|Ω0|

|deg,Fa(0)cCG|

≈ ~|Ω0|
|deg,F cCG|

, (4.56)

where in the last step |a(0)|≈ 1 is assumed, which is justified as follows. In the last section,
|Ω0|= 2π(53 ± 4) Hz as well as an upper bound for the σ−transition Rabi frequencies |Ω+|≤
2π(0.58 ± 0.20) Hz were found using the probe field intensity Ihigh. The ratio of |Ω0| and |Ω+|
(Eqs. 4.12 and 4.11) normalized by their respective Clebsch-Gordan coefficients cCG,0 and cCG,+

yields
|Ω0|
|Ω+|

cCG,+

cCG,0
=

53

0.58

1√
F+1√
F√
F+1

=
53

0.58

√
2

9
=
|a(0)|
|a(+1)|

(4.57)

such that

|a(+1)|= 0.58

53

√
9

2
|a(0)|≈ 0.023|a(0)|. (4.58)

Assuming |a(−1)|≈ |a(+1)| and using that the polarization vector a (Eq. 4.10) is a unit vector, it
follows that

1 = |a|=
√
|a(0)|2+|a(+1)|2+|a(−1)|2 ≈

√
|a(0)|2+2(0.023|a(0)|)2 ≈ |a(0)|. (4.59)

Hence for the determination of Eprobe only the matrix element of the clock transition, in the
following denoted as deg,F,clock, needs to be found.
In general, dipole matrix elements can calculated from excited state life times τlife or Einstein
A-coefficients A = τ−1

life (decay rates), while the connection between A and deg = |〈g|d|e〉| is given
by [25]

A =
ω2

0|〈g|d|e〉|2

3πε0~c3
, (4.60)

where ω0 is the transition frequency, ε0 the vacuum permittivity and c the speed of light. For
fine structure transitions |Jg〉 → |Je〉, the degeneracy of the ground and excited state 2Jg/e + 1
needs to be taken into account. It can be shown that in this case the decay rate is given by [25]

AJgJe =
ω2

0

3πε0~c3

1

2Je + 1

∑
mg ,me

|〈Jg,mg|d|Je,me〉|2 (4.61)

=
ω2

0

3πε0~c3

2Jg + 1

2Je + 1
|〈Jg||d||Je〉|2. (4.62)
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Equation 4.62 can then be solved for the reduced matrix element deg,J = |〈Jg||d||Je〉|

|〈Jg||d||Je〉|=

√
AJgJe3πε0~λ3

(2π)3

2Je + 1

2Jg + 1
, (4.63)

where ω0/c = k is replaced by k = (2π)/λ.
To calculate the dipole matrix element of the clock transition, the Einstein A-coefficient is
calculated from the 3P0 state lifetime of τlife = 0.195(8) s reported in [38]. The coefficient yields
Aclock = (5.13± 0.21) s−1. Now, using Eq. 4.63, the clock transition wavelength λclock = c/νclock

as well as Je = Jg = 0, the reduced matrix element of the clock transition is calculated to be
deg,J,clock = (1.55±0.03)×10−33 Cm. Since the total angular momentum of the clock transition
ground and excited state includes the nuclear spin I = 9/2, one needs to find the reduced matrix
element deg,F ,clock = 〈Fg = 9/2||d||Fe = 9/2〉 in the hyperfine basis {|F 〉}. But regarding the
fact that both clock states are J = 0 states, there is just one F = 9/2 hyperfine state for each
clock state. Therefore

deg,F ,clock = deg,J,clock.

A straight forward proof is given as follows. At first, following [25], the reduced dipole matrix
element in the basis {|J〉} can be expressed in terms of {|F,mF 〉} by∑

Fg ,mg

|〈Fg,mg|d|Fe,me〉|2=
2Jg + 1

2Je + 1
|〈Jg||d||Je〉|2. (4.64)

Applying Eq. 4.64 to the clock transition yields∑
Fg ,mg

|〈Fg,mg|d|Fe,me〉|2 = |〈9
2
,
7

2
|d|9

2
,
9

2
〉|2+|〈9

2
,
9

2
|d|9

2
,
9

2
〉|2 (4.65)

=
2Jg + 1

2Je + 1
d2
eg,J,clock

Jg=Je
= d2

eg,J,clock.

Now, the two matrix elements on the right hand side of Eq. 4.65 can be replaced using the
Wigner-Eckart theorem. The application of the theorem to transitions between hyperfine states
yields [25]

〈Fg,mg|d|Fe,me〉 = 〈Fg||d||Fe〉 〈Fg,mg|Fe,me; 1, q〉︸ ︷︷ ︸
cCG

, (4.66)

where q = {−1, 1, 0} indicates the photon polarization with respect to the bias magnetic field
orientation. Using Eq. 4.66, Eq. 4.65 can be rewritten as

|〈9
2
,
7

2
|d|9

2
,
9

2
〉|2+|〈9

2
,
9

2
|d|9

2
,
9

2
〉|2 = d2

eg,F ,clock(|〈9
2
,
7

2
|9
2
,
9

2
; 1,−1〉|2︸ ︷︷ ︸

|cCG,−|2

+ |〈9
2
,
9

2
|9
2
,
9

2
; 1, 0〉|2︸ ︷︷ ︸

|cCG,0|2

)

= d2
eg,F ,clock

(
9
2

9
2 + 1

+
1

9
2 + 1

)
= d2

eg,F ,clock,

where the Clebsch-Gordan coefficients as defined in Eqs. 4.11 and 4.12 are used. Finally, again
using Eq. 4.64,

d2
eg,F ,clock = d2

eg,J,clock

⇔ deg,F ,clock = deg,J,clock.
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An alternative approach to determine the clock transition matrix element is presented in [57].
This approach uses the fact that the clock transition excited state |3̃P0, F = 9/2〉 is a mixture
of the unperturbed states |3P0, F = 9/2〉, |3P1, F = 9/2〉 and |1P0, F = 9/2〉

|3̃P0, F =
9

2
〉 = |3P0,

9

2
〉+ α0(α|3P1,

9

2
〉+ β|1P1,

9

2
〉) + β0(β|3P1,

9

2
〉+ α|1P1,

9

2
〉), (4.67)

with mixing coefficients α0 = −1.1 × 10−3, β0 = 3.5 × 10−5, α = 0.997 and β = −0.079. Note
that the Hamiltonian which introduces the mixing between 3P0 and 3P1,1P1 is diagonal in the
{|F 〉} basis, such that only F = I = 9/2 states contribute to the state mixture [58]. Using
Eq. 4.67, deg,F ,clock is given by

|〈1S0, F =
9

2
||d||3̃P0, F =

9

2
〉|︸ ︷︷ ︸

deg,F ,clock

= |(α0β + β0α)||〈1S0, F =
9

2
||d||1P1, F =

9

2
〉|︸ ︷︷ ︸

:=deg,F ,158nm

. (4.68)

Hence, to calculate deg,F,clock, the matrix element deg,F,158nm of the |1S0, F = 9/2〉 → |1P1, F =
9/2〉 at λ ≈ 158.637 nm (taken from [59]) needs to be determined. At first, the dipole matrix
element deg,J,158nm is calculated using Eq. 4.63 and the respective Einstein A coefficient A158 nm =
(1.27± 0.08)× 109 s−1 reported in [60], such that deg,J,158nm = (2.32± 0.07)× 10−29 Cm. Now
deg,F,158nm can be calculated from deg,J,158nm using the decomposition formula [25]

〈Fg||d||Fe〉︸ ︷︷ ︸
deg,F

= 〈Jg||d||Je〉︸ ︷︷ ︸
deg,J

(−1)Fe+Jg+1+I
√

(2Fe + 1)(2Jg + 1)

{
Jg Je 1
Fe Fg I

}
︸ ︷︷ ︸
Wigner 6j symbol

, (4.69)

where the expression in curly brackets is the Wigner 6j symbol which can be calculated using,
e.g. Mathematica. Finally, the clock transition matrix element yields deg,F ,clock = (1.63±0.05)×
10−33 Cm. As can be seen, both ways to calculate the clock transition matrix element agree with
each other within the given uncertainties. Since the first calculated value of the matrix element
is directly calculated from the excited state lifetime and hence fewer experimental parameters
are needed for its determination, deg,J,clock = (1.55± 0.03)× 10−33 Cm is used in the following.
Now, the probe field Eprobe can be calculated using cCG,0, the Rabi frequency |Ω0,low|= 2π ×
(4.6±0.3) Hz determined in the previous section (see Eq. 4.46) and Eq. 4.56, such that Eprobe =
(2.18± 0.18) V/m.
In the following, the order of magnitude of the ac-Stark shift produced by different off-resonant
transitions is investigated. For the first analysis, the hyperfine structure is neglected and the ac-
Stark shift is calculated for fine structure states |J〉 using the respective dipole matrix elements
deg,J . This is done to estimate the magnitude of each shift and to decide which transitions
need to be considered in the evaluation of total shift δ(off−res)

ac,total . In principle, every-off resonant
transition coupling to the clock transition ground or excited state produces an ac-Stark shift
and should therefore be included in the shift analysis. But since δ(off−res)

ac ∝ Ω2 ∝ d2
eg ∝ A

and δ
(off−res)
ac ∝ ∆−1, the significance of each off resonant transition is therefore given by the

magnitude of the respective A−coefficient and the detuning ∆ relative to the clock transition.
In the NIST Atomic Spectra Database [59], wavelength λ as well as A−coefficients for various
transitions in In+ can be found. In Tab. 3, selected transitions together with needed parameters
for the calculation are gathered. These transitions are chosen because they show either a small
detuning or a large A−coefficient. With these parameters, for every transition the reduced dipole
matrix element deg,J is calculated using Eq. 4.63 and finally, using Eq. 4.53 and the previously
calculated probe field Eprobe, each contribution δ(off−res)

ac,i .
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Table 3 Transitions and respective experimental parameters for the determination of the indi-
vidual shifts δ(off−res)

ac,i , transitions highlighted blue result in a fractional frequency shift > 10−22

and are used for further evaluation of the total shift δ(off−res)
ac,total .

transition λ (nm) A (109/s) ∆ (1015 Hz) deg,J (10−30 Cm)
δ
(off−res)
ac,i

ωclock
(10−22)

(5s)2 1S0 → 5s8p 1P1 73.478 0.036 −2.81263 1.233 +0.012

(5s)2 1S0 → 5s5p 1P1 158.637 1.27[60] −0.622399 23.230 +18.474
(5s)2 1S0 → 5s5p 3P1 230.606 0.0023 −0.0326177 1.733 +1.961
5s5p 3P0 → 5s10d 3D1 96.993 0.046 −1.82346 2.114 −0.052
5s5p 3P0 → 5s11s 3S1 97.348 0.016 −1.81219 1.253 −0.018
5s5p 3P0 → 5s8d 3D1 102.244 0.034 −1.66473 1.967 −0.050
5s5p 3P0 → 5s6d 3D1 121.263 0.13 −1.20485 4.967 −0.436
5s5p 3P0 → 5s7s 1S0 126.316 0.03 −1.10595 1.465 −0.041
5s5p 3P0 → (5p)2 3P1 164.005 0.37 −0.560545 13.180 −6.603
5s5p 3P0 → 5s5d 3D1 167.187 0.73 −0.525754 19.054 −14.715
5s5p 3P0 → 5s6s 3S1 193.619 0.096 −0.280962 8.612 −5.624

As can be seen, there are just a few transitions producing a fractional frequency shift on the
order of 10−21 · · · 10−22. These blue highlighted transitions (see Tab. 3) will be used in the
following analysis of the total shift δ(off−res)

ac and its uncertainty. All other transitions result in
a minor contribution to the total shift and are therefore neglected.
For the evaluation of the total shift and its uncertainty, the original references of the data given
in [59] are reviewed to find the uncertainties of the Einstein A−parameters. These uncertainties
as well as the evaluated uncertainties of matrix elements and the fractional frequency shifts are
shown in Tab. 4. For the starred values uncertainties could not be found, because they originate
from theoretical calculations or the reference was not accessible. Therefore, a conservative
uncertainty of ±100% was assumed. The given wavelengths are precisely known compared to
the A−parameters and therefore considered without uncertainty.

Table 4 Individual fractional frequency shifts δ(off−res)
ac,i /ωclock and calculated uncertainties for

the transitions highlighted blue in Tab. 4.

transition A (109/s) deg,J (10−30 Cm)
δ
(off−res)
ac,i

ωclock
(10−22)

(5s)2 1S0 → 5s5p 1P1 1.27± 0.08[60] 23.2± 0.7 +18.5± 3.2

(5s)2 1S0 → 5s5p 3P1 0.0023± 0.0002[60] 1.73± 0.08 +2.0± 0.4

5s5p 3P0 → (5p)2 3P1 0.37∗ ± 0.37 [59, 61] 13± 7 −6.6± 6.6

5s5p 3P0 → 5s5d 3D1 0.73∗ ± 0.73[59, 62] 20± 10 −14.7± 14.9

5s5p 3P0 → 5s6s 3S1 0.096∗ ± 0.096[59, 61] 9± 4 −5.6± 5.7

Now, the total total shift δ(off−res)
ac,total can be calculated using Eq. 4.54

δ
(off−res)
ac,total

2π
= (−0.8± 2.2)µHz

which leads to a fractional frequency shift

δ
(off−res)
ac,total

ωclock
= (−0.7± 1.7)× 10−21.

So far, the treatment of the shift completely neglects the hyperfine structure of the con-
tributing states. Only |J〉 states were considered. Since 115In has a half integer nuclear spin
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I = 9/2, for every J = 1 state, there are three hyperfine states |F = {11/2, 9/2, 7/2}〉. As
shown in Eq. 4.59, the components |a(±1)| driving σ± transitions are small compared to |a(0)|.
Therefore, the probe field mainly introduces coupling between ∆mF = 0 Zeeman substates and
∆mF = ±1 transitions are highly suppressed. As a result, there will be only coupling between
the |mF,g/e|= 9/2 Zeeman substates of the clock ground and excites state Zeeman manifolds to
|F = {11/2, 9/2}, |mF |= 9/2〉 excited states of the considered off resonant transitions. On the
other hand, there is no coupling at all to |F = 7/2〉 hyperfine states, due to missing ||mF |= 9/2〉
substates. The missing coupling will lead to a reduced ac-Stark shift compared to the previ-
ously determined value. A more rigorous treatment which considers the presence of hyperfine
structure is done in the following.
To take the hyperfine structure into account, it is nescessary to calculate the respective matrix
elements deg,F,mF = 〈Fg,mF |d|Fe,mF 〉. This can be done from the matrix elements deg,J given
in Tab. 5 and the decomposition formula in Eq. 4.69 and afterwards applying the Wigner-Eckart
theorem for hyperfine transitions (see Eq. 4.66). The matrix elements deg,F,m as well as resulting
ac-stark shifts are calculated and gathered in Tab. 5.

Table 5 Reevaluated individual fractional frequency shifts δ(off−res)
ac,i /ωclock for selected hyperfine

Zeeman transitions.

transition deg,F,|mF |=9/2 (10−30 Cm)
δ
(off−res)
ac,i

ωclock
(10−22)

(5s)2 1S0 → 5s5p 1P1 F = 11/2 6.26± 0.20 +1.34± 0.23
(5s)2 1S0 → 5s5p 1P1 F = 9/2 12.1± 0.4 +5.0± 0.9
(5s)2 1S0 → 5s5p 3P1 F = 11/2 0.467± 0.020 +0.143± 0.026
(5s)2 1S0 → 5s5p 3P1 F = 9/2 0.90± 0.04 +0.5± 0.1

5s5p 3P0 → (5p)2 3P1 F = 11/2 3.6± 1.8 −0.5± 0.5
5s5p 3P0 → (5p)2 3P1 F = 9/2 7± 3 −1.8± 1.8
5s5p 3P0 → 5s5d 3D1 F = 11/2 5.1± 2.6 −1.1± 1.1
5s5p 3P0 → 5s5d 3D1 F = 9/2 10± 5 −4± 4
5s5p 3P0 → 5s6s 3S1 F = 11/2 2.3± 1.2 −0.4± 0.4
5s5p 3P0 → 5s6s 3S1 F = 9/2 4.5± 2.2 −1.5± 1.6

Using the evaluated individual shifts, the total shift as well as the fractional total frequency shift
are calculated

δ
(off−res)
ac,total

2π
= (−0.3± 0.6)µHz (4.70)

δ
(off−res)
ac,total

ωclock
= (−2± 5)× 10−22. (4.71)

In the next subsection, the total probe field induced ac-Stark shift including the ellipticity
induced shift presented in section 4.1.5 as well as the ac-Stark shit by off-resonant transitions is
evaluated.

4.3 Evaluation of the total probe field induced ac-Stark shift

After the ellipticity induced shift δ(el−ind)
ac as well as the ac-Stark shift by off resonant transitions

δ
(off−res)
ac were determined in 4.1.5 and 4.2.2, the total resulting probe field induced shift δ(probe)

ac

can be evaluated. Since frequency shifts in atomic clocks simply add up, δ(probe)
ac can be calculated

by the sum of δ(el−ind)
ac and δ(off−res)

ac,total given in Eqs. 4.51 and 4.71

δ
(probe)
ac

2π
=
δ

(el−ind)
ac + δ

(off−res)
ac,total

2π
= (−0.3± 0.8)µHz (4.72)
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resulting in a fractional frequency shift of

δ
(probe)
ac

ωclock
= (−2± 6)× 10−22. (4.73)

4.4 Summary

This chapter presented the analysis of two contributions to the probe field induced ac-Stark shift,
namely the ellipticity induced ac-stark shift and the ac-Stark shift by off-resonant transitions.
As shown by Yudin et. al [18], the ellipticity induced shift originates from an unwanted elliptic-
ity of the probe field as well as a misorientation of the bias magnetic field, which are described
by the parameters ε and ξ. A first estimate of these experimental imperfections resulted in
|εξ|est≈ 2× 10−3. Using this estimate, a first comparative analysis of the shift for different clock
experiments was done. The calculated shift are in the low to mid 10−21 region for all considered
clock species, the lowest value of ≈ 1.6× 10−22 was determined for the indium clock at PTB. It
was also shown that 115In+ is a favorable species, since it shows the lowest intrinsic shift sensi-
tivity among all compared species. In an experimental analysis based on clock spectroscopy in
the indium clock setup, an upper bound for |εξ|max≤ (2.7±1.9)×10−4 was determined. Finally,
based on the experimental results, the fractional ellipticity induced shift for the indium clock
was determined to be (0± 4)× 10−22.
Afterwards, the ac-Stark shift by far off-resonant transitions was determined based on a theo-
retical analysis. Since the ac-Stark shift is proportional to the square of the probe field strength,
Eprobe was determined. Afterwards, dipole matrix elements for various far-off resonant transi-
tions in 115In+ were calculated to estimate their contribution to the total ac-Stark shift. It was
shown that, neglecting hyperfine structure, only 5 finestructure transitions yield a shift on the
order of 10−21 − 10−22. With these five transitions, a more rigorous analysis was done. The
analysis took into account the hyperfine structure as well as, using results of the analysis of the
ellipticity induced shift, the polarization state of the probe field. Here the ac-Stark shift by far
off-resonant transitions was determined to be (−2± 5)× 10−22.
Finally, the total fractional probe field induced ac-Stark shift was determined to be (−2± 6)×
10−22 as the sum of both analyzed shifts.
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5 Modelling and analysis of sympathetic Doppler cooling

As presented in chapter 2, the clock ion temperature has a major impact on the performance
of an atomic clock by means of e.g. the temperature related loss of contrast (maximum excited
state population |ce|2, see 2.6) or the thermal time dilation shift (see 2.3.1). In addition, the
axial temperature cannot be determined from Rabi flops due to a missing projection of the
clock laser onto the trap axis. This motivates a thorough theoretical ion temperature analysis
for the indium clock. Such an analysis is carried out in this chapter based on a model for
sympathetic Doppler cooling described by Keller et al. [19]. While in [19] the model is restricted
to a single cooling beam with a fixed orientation relative to the trap axes, here it is extended
to multiple cooling beams with arbitrary orientation and applied to the experimental conditions
in the indium setup. The theoretical model and its extension will be subject of section 5.1. In
section 5.2, the model will be used to simulate and analyze the ion temperatures for the clock
sequence used in the spring 2022 clock campaign (see Fig. 3.3). Based on the results of section
5.2, possible improvements of selected phases in the clock sequence are investigated in section
5.3.

5.1 Theoretical Model

This section presents the theoretical model used to simulate sympathetic Doppler cooling in the
indium clock setup. The section is structured as follows. In 5.1.1, the basic model as presented
in [19] is introduced. 5.1.2 presents the extensions of the model to multiple cooling beams and
the application to the experimental conditions in the indium clock setup. Afterwards, in 5.1.3,
the model is further simplified, while in 5.1.4, the validity of fundamental assumptions made in
[19] is investigated. Lastly, 5.1.5 presents the calculation of important parameters needed for
the following simulations in sections 5.2 and 5.3.

5.1.1 Rate equation model for sympathetic mode cooling

The energy Ejα of a mode α along the principal axis5 j in the process of sympathetic Doppler
cooling is affected by three rates, such that the temporal change is given by

d

dt
Ejα = Ėjα = Ėcool,laser,jα + Ėheat,laser,jα + Ėheat,ext,jα. (5.1)

Here Ėcool,laser,jα is the cooling rate as a measure for the dissipated thermal energy per unit
time and Ėheat,laser,jα the heating rate which accounts for heating due to photon absorption and
spontaneous emission. Besides these two rates which originate from interaction of the cooling
laser with the cooling ions, there is an additional heating rate Ėheat,ext,jα. This rate describes
the non-laser-related heating originating e.g. from stray electric fields. Usual Doppler cooling
times are on the order of ms (see section 3.3) while the oscillation periods in the trap are on
the order of tens of µs. Therefore, it is convenient to average Ėcool,laser,jα and Ėcool,laser,jα and
hence neglect changes on the timescales smaller than an oscillation period. The time average of
the aforementioned rates are then given by

〈Ė〉cool,laser,jα = Γsc,0kBTjα~kjρj
1

mion,cool

Ncool∑
i=1

β′
2
jα,i︸ ︷︷ ︸

:=Cjα

(5.2)

〈Ė〉heat,laser,jα =
Γsc,0

2
( ~2k2

j︸︷︷︸
∝ absorption

+ ~2k2ξj︸ ︷︷ ︸
∝ emission

)
Cjα

mion,cool
. (5.3)

5To avoid confusion with k−vector components k, the principal axes index k introduced in section 2.4.2 is
renamed j.
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Here kB is the Boltzmann constant, mion,cool the mass of the contributing cooling ions in the
Coulomb crystal, kj the projection of the cooling laser k−vector k (k = |k|) onto the mode
principal axis j and Cjα defined as the sum of squared mass-weighted-space mode eigenvector
components β′jα,i as presented in section 2.4.3. Moreover, there is the scattering rate Γsc,0 and
the friction coefficient ρj defined as

Γsc,0 =
Γ

2

s

1 + s+ (2∆0
Γ )2

(5.4)

ρj =
8kj∆0

Γ2(1 + s+ (2∆0
Γ )2)

, (5.5)

with the natural linewidth Γ and saturation parameter s of the cooling transition as well as the
detuning ∆0 = ωL − ω0 ≈ −Γ/2 of the cooling laser frequency ωL with respect to the cooling
transition center frequency ω0. Both expressions result from a linearization of each cooling ion’s
scattering rate Γsc,i (by analogy with the treatment of a single trapped ion in [31])

Γsc,i =
Γ

2

s

1 + s+
(

2(∆0−k
∑
j,α vjα,i

Γ

)2 (5.6)

≈ Γsc,0(1 +
∑
j,α

ρjvjα,i),

in the ion’s oscillation velocity |vi|= |
∑

j,α vjα,i| where vjα,i is the component of vi describing
the velocity of the motion in the mode α along the principal axis j. The mode velocities are
given by

|vjα,i|= v0,jα,i |cos(ωjαt+ ϕjα)|, (5.7)

with the peak oscillation velocity

v0,jα,i = |β′jα,i|

√
2kBTjα
mion,cool

. (5.8)

Here Tjα is the mode temperature. Note that the cosine in vjα,i originates from the oscillatory
motion along each mode principal axis. The linearization is justified by the assumption that
the 1st order Doppler shift |δ1D,i|= |k

∑
j,α vjα,i|= |

∑
j,α kjvjα,i|� |∆0|, which will be discussed

further in subsection 5.1.4. By having a closer look at the heating rate in Eq. 5.3, one can
see that it is given by two terms ∝ k2

j and ∝ k2ξj . The first term ∝ k2
j describes heating due

to absorption. The proportionality results from the fact that only the component ~kj of the
absorbed photon momentum ~k parallel to the mode principal axis j contributes to heating6.
The second term ∝ kξj describes heating due to the spontaneous emission, where the geometric
factor ξj covers the angular dependence of the cooling transition’s emission pattern with respect
to the mode principal axis. For a spherically symmetric emission pattern, ξj = 1/3, as will be
shown in subsection 5.1.5.
Since the motion along one of the mode principal axes can be described by a 1D harmonic
oscillator,

〈E〉 = kBT

holds. Hence by division of 〈Ė〉jα by kB a differential equation for the mode temperature Tjα is
obtained

〈Ė〉jα
kB

= Ṫjα = Γsc,0~kjρj
Cjα

mion,cool︸ ︷︷ ︸
:=c1,jα

Tjα +
Γsc,0

2kB
(~2k2

j + ~2k2ξj)
Cjα

mion,cool
+

1

kB
Ėheat,ext,jα︸ ︷︷ ︸

:=c0,jα

, (5.9)

⇒ Ṫjα = c1,jαTjα + c0,jα, (5.10)
6Note that the same argument holds for the cooling rate 〈Ė〉cool,laser,jα ∝ k2

j .
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where c1 < 0 for ∆0 < 0 and c0 > 0 are the cooling and heating coefficients. It can be shown
that the general solution to the derived differential equation in Eq. 5.10 is given by

Tα(t) =

[
Tjα(t0) +

c0,jα

c1,jα
ec1,jαt0

]
ec1,jαt − c0,jα

c1,jα
. (5.11)

Choosing the initial time t0 = 0 s, the solution simplifies to

Tjα(t) =

Tjα(t0)︸ ︷︷ ︸
=Tini,jα

+
c0,jα

c1,jα

 ec1,jαt−c0,jα

c1,jα︸ ︷︷ ︸
:=Teq,jα

(5.12)

= [Tini,jα − Teq,jα] ec1,jαt + Teq,jα, (5.13)

where Tini,jα is the initial temperature and Teq,jα the equilibrium temperature for cooling times
t→∞, given by

Teq,jα = −
Γsc,0

2kB
(~2k2

j + ~2k2ξj)
Cjα

mion,cool
+ 1

kB
Ėheat,ext,jα

Γsc,0~kjρj
Cjα

mion,cool

= −c0,jα

c1,jα
. (5.14)

Assuming a vanishing external heating rate, as will be discussed in subsection 5.1.3, the factor
Cjα cancels such that there is no explicit dependence on the mode jα. Therefore all modes along
a given principal axis have the same equilibrium temperature. For a single cooling beam with
equal projection on the three mode principal axes (i.e. kj = 1/

√
3k), as well as a symmetric

emission pattern (ξj = 1/3), the equilibrium temperature is equal to the well known Doppler
limit TD

Teq,jα =
~Γ

2kB
= TD (5.15)

in the limit s → 0 [19]. For different cooling beam orientations, the equilibrium temperature
can even be smaller. This was shown theoretically in [31] for cooling of a single trapped ion.
The author assumed a single cooling beam parallel to a mode principle axis where the minimum
temperature Tmin along this axis is given by

Tmin =
~Γ
√

1 + s

4kB
(1 + ξj)

s→0→ ~Γ

4kB
(1 + ξj)

ξj<1
< TD, (5.16)

which is smaller than TD since ξj < 1.
If the cooling c0/1 ≡ c0/1(t) are assumed to be functions of time, e.g. for time dependent
saturation parameters s(t) as used in the cooling phase of the clock sequence (see Fig. 3.3), the
solution of 5.10 is given by

Tjα(t) = e
∫ t
t0
c1,jα(t′) dt′

[Tini,jα +

∫ t

t0

c0,jα(t′)e
−

∫ t′
t0
c1,jα(t′′) dt′′

dt′]. (5.17)

Note that the assumed rate equation model is derived in the limit of small saturation s � 1,
where absorption and emission processes can be considered uncorrelated [31]. A more rigorous
treatment can be found e.g. in [48, 63]. To keep things simple, effects such as the mentioned
correlations will be neglected throughout this thesis.
Since the general time dependence of the mode Temperature Tjα is now found, the model will
be extended to multiple lasers and applied to the experimental conditions in the indium clock
setup at PTB.
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5.1.2 Extension of the model to multiple lasers in the 115In+ clock setup

In the following, the cooling coefficients c0/1 for the axial modes and the modes of both radial
axes are derived. As shown in 3.2, there are three Yb+ cooling beams addressing the Doppler
cooling transition at ≈ 370 nm which are named H1, H2 and V. Although the indium detection
beam at ≈ 230.6 nm, named 230, is not intentionally used for cooling yet, it contributes to the
time evolution of the mode temperatures. Therefore it needs to be taken into account. For
all the beams, the k−vector projections kj on the principal axes need to be determined. The
orientation of the beams in the xz- and xy-plane relative to the trap axis with secular frequency
νax and radial principal axes frequencies νrad1 and νrad2 are shown in Fig. 5.1. In addition,
each projection of the k−vectors kH1, kH2, kV and k230 on the principal trap axes are shown as
transparent arrows. Here ϕ is the relative angle between H1/H2 and the radial principal axis
(parallel to the z−axis) and θ the relative angle between V and the radial principal axis νrad1.

Figure 5.1 Projections of the ytterbium Doppler cooling and indium detection beams onto the
principal trap axes. a) Both Doppler cooling beams H1 and H2 (dark blue) have an angle of
ϕ = 23◦ relative to the trap axis with secular frequency νax. Each beam’s k−vector projections
onto the experiments x− and z−axis are shown as transparent blue arrows. The indium detection
beam 230 (pink) is parallel to z and hence the trap axis. b) For the indium detection beam 230
there is no projection onto the radial axes with secular frequencies νrad1/2 (dashed bars). The
orientation of the radial trap axes is described by the angle θ relative to the vertical Doppler
cooling beam V (dark blue). The k−vector projections of H1, H2 and V are again highlighted
by transparent blue arrows.

As can be seen in Fig. 5.1 a), the 230 beam is oriented parallel to the trap axis νax, its
projection is independent of ϕ and θ

k230,ax = k230 = |k230|=
2π

λ230
. (5.18)

Because all trap axes are orthogonal, there is no projection on the radial trap axes νrad1 and
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νrad2. The projections of H1 and H2 onto νax can be calculated to be

kH1/H2,ax = kH1/H2,z = cos(ϕ)|kH1|= cos(ϕ)k370, (5.19)

while the projection onto the x-axis is

kH1/H2,x = sin(ϕ)k370. (5.20)

Note that H1, H2 and V originate from the same laser source and hence

|kH1|= |kH2|= |kV|= k370 =
2π

λ370
. (5.21)

From Fig. 5.1 b), one finds that the projection of H1 and H2 onto the radial axes can be
determined by

kH1/H2,rad1 = cos
(π

2
− θ
)
kH1/H2,x = sin(θ)sin(ϕ)k370 (5.22)

kH1/H2,rad2 = cos(θ)kH1/H2,x = cos(θ)sin(ϕ)k370. (5.23)

For V, there is no projection onto the trap axis and the projections onto the two radial axes are
given by

kV,rad1 = cos(θ)k370 (5.24)
kV,rad2 = sin(θ)k370. (5.25)

Besides the projections, the individual scattering rates originating from each laser need to be
found. Since there are multiple 370 nm beams interacting with the cooling ions, each (ytterbium)
ion scatters photons with an effective scattering rate Γsc,eff . This scattering rate originates from
the sum of all saturations s of the contributing cooling beams. The effective saturation seff is
(since s ∝ I) therefore given by the sum of all saturations sH1, sH2 and sV of H1, H2 and V (see
[48])

seff = sH1 + sH1 + sV. (5.26)

Using this effective saturation, Γsc,eff can be calculated using Eq. 5.4

Γsc,eff =
Γ370

2

seff

1 + seff + (
2∆0,370

Γ )2
, (5.27)

where Γ370 = 2π × 19.6 MHz is the natural linewidth of the cooling transition and ∆0,370 ≈
−Γ370/2. The fraction of Γsc,eff originating from each cooling beam can now be calculated from
the ratio between each beam’s saturation and the effective saturation. Hence the scattering rates
due to the beams H1, H2 and V yield

Γsc,H1 = Γsc,eff
sH1

seff
=

Γ370

2

sH1

1 + seff + (
2∆0,370

Γ )2
(5.28)

Γsc,H2 = Γsc,eff
sH2

seff
=

Γ370

2

sH2

1 + seff + (
2∆0,370

Γ )2
(5.29)

Γsc,V = Γsc,eff
sV

seff
=

Γ370

2

sV

1 + seff + (
2∆0,370

Γ )2
. (5.30)

Since there is just one beam interacting with the indium ions, the corresponding scattering rate
is given by

Γsc,230 =
Γ230

2

s230

1 + s230 + (
2∆0,230

Γ )2
. (5.31)
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Here s230 is the saturation coefficient of the 230 beam, Γ230 = 2π × 360 kHz is the natural
linewidth of the indium detection transition and ∆0,230 ≈ −Γ230/2.
With the above projections of the k−vectors as well as the scattering rates for all beams, the
cooling and heating coefficients c1 and c0 can be defined for each principal axis.
For the definition, it is assumed that the coefficients can be calculated by summing up the
individual cooling and heating coefficients originating from each beam. This assumption is
justified by the fact that there is no interference between two or more beams which could lead to
a time dependent modulation of the intensity at the ion position and hence a modulation of the
saturation. Of course, H1 and H2 are not orthogonal, but as can be seen in the clock sequence
scheme in Fig. 3.3, never switched on simultaneously. Moreover, since 230 and the other 370 nm
beams are far detuned from each other, there is also no interference. A more rigorous approach
including the effect of interference can be found in [48].
At first, the heating coefficients are derived. Using the definition of c0 in Eq. 5.9, c0,rad1/2 for
the modes of radial trap axes νrad1/2 are given by

c0,rad1/2,α =
1

kB
Ėheat,ext,rad1/2,α + c0,rad1/2,370,α + c0,230,α (5.32)

with the external heating rates of the radial modes Ėheat,ext,rad1/2,α and laser specific heating
coefficients

c0,rad1/2,370,α =
1

kB
~2(Γsc,H1k

2
H1,rad1/2 + Γsc,H2k

2
H2,rad1/2 + Γsc,Vk

2
V,rad1/2

+ Γsc,effk
2
370ξYb,rad)

1

mYb

NYb∑
i=1

β′
2
Yb,rad1/2,α,i︸ ︷︷ ︸

:=CYb,rad1/2,α

(5.33)

=
1

kB

Γsc,eff

seff
~2(sH1k

2
H1,rad1/2 + sH2k

2
H2,rad1/2 + sVk

2
V,rad1/2

+ seffk
2
370ξYb,rad)

CYb,rad1/2,α

mYb

(5.34)

c0,rad1/2,230,α =
1

kB
Γsc,230~2k2

230ξIn,rad
1

mIn

NIn∑
j=1

β′
2
In,rad1/2,α,j︸ ︷︷ ︸

:=CIn,rad1/2,α

. (5.35)

Here ξYb,rad = 1/3 and ξIn,rad = 3/10 are the geometric factors for spontaneous emission for the
radial trap axes. Both factors take into account the emission patterns of the ytterbium cooling
and indium detection transition as will be shown in subsection 5.1.5. Note that there is no term
for heating by photon absorption in c0,230, since the 230 beam has no projection onto the radial
trap axes. For the cooling parameters c1,rad1/2 the friction coefficients ρ (see Eq. 5.5) need to be
defined for each laser. They are given by

ρH1,rad1/2 =
8kH1,rad1/2∆0,370

Γ2
370(1 + seff + ( 2∆0

Γ370
)2)

(5.36)

ρH2,rad1/2 =
8kH2,rad1/2∆0,370

Γ2
370(1 + seff + ( 2∆0

Γ370
)2)

(5.37)

ρV,rad1/2 =
8kV,rad1/2∆0,370

Γ2
370(1 + seff + ( 2∆0

Γ370
)2)

. (5.38)
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Note that the saturation coefficient in the denominator is given by seff , not by the beam specific
coefficient sH1, sH2 or sV. This can be explained by the fact that the friction coefficient ρ results
from a Taylor expansion of the total scattering rate Γsc in Eq. 5.6 (for s = seff). Or from
the physical point of view, the transition saturates independent of the incident direction of the
photons.
With the given friction coefficients and the definition of c1 in Eq. 5.9, the cooling coefficients
c1,rad1/2 become

c1,rad1/2,α = ~(Γsc,H1kH1,rad1/2ρH1,rad1/2 + Γsc,H2kH2,rad1/2ρH2,rad1/2

+ Γsc,VkV,rad1/2ρV,rad1/2)
CYb,rad1/2,α

mYb

(5.39)

=
Γsc,eff

seff
~(sH1kH1,rad1/2ρH1,rad1/2 + sH2kH2,rad1/2ρH2,rad1/2

+ sVkV,rad1/2ρV,rad1/2)
CYb,rad1/2,α

mYb
.

(5.40)

For the temperature dynamics of the axial modes, the situation is different. There is no contri-
bution of V to the cooling coefficient c1,ax,α, because V is orthogonal to the axial modes. Hence,
V only contributes via heating by spontaneous emission. On the other hand, the 230 beam is
parallel to the axial modes and therefore contributes to cooling and heating during the indium
detection. Again, starting with the heating coefficient, c0,ax,α is given by

c0,ax,α =
1

kB
Ėheat,ext,ax,α + c0,ax,370,α + c0,230,α (5.41)

with the external heating rate Ėheat,ext,ax,α for the axial modes and laser specific coefficients
defined by

c0,ax,370,α =
1

kB
~2(Γsc,H1k

2
H1,ax + Γsc,H2k

2
H2,ax + Γsc,effk

2
370 nmξYb,ax)

1

mYb

NYb∑
i=1

β′
2
Yb,ax,α,i︸ ︷︷ ︸

:=CYb,ax,α

(5.42)

=
1

kB

Γsc,eff

seff
~2(sH1k

2
H1,ax + sH2k

2
H2,ax + sVk

2
V,ax + seffk

2
370 nmξYb,ax)

CYb,ax,α

mYb
(5.43)

c0,ax,230,α =
1

kB
Γsc,230~2k2

230(1 + ξIn,ax)
1

mIn,ax

NIn∑
j=1

β′
2
In,ax,α,j︸ ︷︷ ︸

:=CIn,ax,α

. (5.44)

where ξYb,ax = 1/3 and ξIn,ax = 2/5 are the geometric factors for the axial modes (see subsection
5.1.5). For the cooling parameter, again the friction coefficients ρ need to be defined. They are
given by

ρH1,ax =
8kH1,ax∆0,370

Γ2
370(1 + seff + (

2∆0,370

Γ370
)2)

(5.45)

ρH2,ax =
8kH2,ax∆0,370

Γ2
370(1 + seff + (

2∆0,370

Γ370
)2)

(5.46)

ρ230 =
8k230∆0,230

Γ2
230(1 + s230 + (

2∆0,230

Γ230
)2)

. (5.47)

Using these, axial cooling is described by

c1,ax,α = c1,ax,370,α + c1,ax,230,α (5.48)
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with

c1,ax,370,α = ~(Γsc,H1kH1,axρH1,ax + Γsc,axkH2,axρH2,ax)
CYb,ax,α

mYb
(5.49)

=
Γsc,eff

seff
~(sH1kH1,axρH1,ax + sH2kH2,axρH2,ax)

CYb,ax,α

mYb
(5.50)

c1,ax,230,α = ~(Γsc,230k230ρ230)
CIn,ax,α

mIn
. (5.51)

By inserting the respective total cooling and heating coefficients for the axial and radial modes
into Eq. 5.12, the time dependence of the mode Temperatures Tax,α(t) and Trad1/2,α(t) in the in-
dium clock setup is fully described in the framework of the assumed model. This time dependence
will be used extensively to analyze the mode temperatures during the spring clock campaign
in section 5.1 and afterwards in section 5.3 to investigate possible optimizations regarding e.g.
cooling time and end temperatures of the Doppler cooling phase. In the next subsection, the
magnitude of the external heating rates Ėheat,ext,rad,α and Ėheat,ext,ax,α are analyzed.

5.1.3 Estimate of external heating rates

External heating is predominantly induced by unwanted stray fields which originate predomi-
nantly from the trap electrodes. In [19], Keller et al. measured the radial heating using a single
trapped ytterbium ion

ṅrad = 2.8× 1011 s−1 Hz2

ν2
rad

, (5.52)

where n is the mean phonon occupation number of the radial modes. The connection to the
heating rate Ėheat,ext,rad,α is given by

Ėheat,ext,rad,α = ṅrad~ωrad = ṅradhνrad. (5.53)

ṅrad was determined using a radial secular frequency νrad = 500 kHz, such that

Ėheat,ext,rad,α =
1.12

s
h× 500 kHz ≈ 4× 10−28 J

s
. (5.54)

In the process of photon emission during Doppler cooling, the photons recoil energy increases
the thermal energy of the ion by

Erec =
~2k2

2mion
, (5.55)

which is Erec,370 ≈ 5 × 10−30J in case of the ytterbium cooling transition. Assuming that this
energy is equally distributed to the modes of the three principal axes, as well as a scattering rate
on the order of MHz, the radial and axial heating rates due to photon emission are estimated to
be

Ėheat,emiss,rad,α ∝ Ėheat,emiss,ax,α ∝
5× 10−30J× 1 Hz

3
≈ 1.7× 10−24 J

s
(5.56)

which is more than three orders of magnitude larger than the external radial heating rate.
Regarding the fact that radial secular frequencies were νrad1/2 ≈ 800 kHz in the spring clock
campaign, the corresponding external heating rate is even smaller.
The external heating of the axial modes can be estimated using a rate of ṅax ≈ 5/s determined by
Kalincev et al. in [64] for an axial secular frequency of ≈ 200 kHz, close to the axial frequency
νax = 275 kHz used during the spring clock campaign. This measurement was done with an
ion trap of the same type. Therefore, the external radial heating rate in the indium setup is
estimated to be

Ėheat,ext,rad,α ≈
5

s
h× 275 kHz ≈ 9× 10−28 J

s
� Ėheat,emiss,ax,α. (5.57)
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All above mentioned heating rates correspond to the center-of-mass (COM) mode where all ions
are oscillating in phase (see e.g. the axial mode α = 1 and the radial mode α = 4 in Fig. 5.3).
For all other modes, the external heating rates are further suppressed [65]. Since the estimated
external heating rates are orders of magnitude smaller compared to the heating rate resulting
from photon scattering, both are neglected throughout the application of the model.

5.1.4 Linearization of ion scattering rates for the In+ detection and Yb+ cooling
transition

As presented in subsection 5.1.1, the model is simplified by a linearization of the scattering rate
Γsc,i (see Eq. 5.6) which holds for a 1st order Doppler shift of each ion |δ1D,i|= |

∑
j,α kjvjα,i|�

|∆0|. The validity of the linearization for the ytterbium cooling and indium detection transition
are analyzed in the following.
For the analysis, the maximum mode temperatures Tjα,max are calculated for which the condition
|δ1D,i|≤ |∆0| is still satisfied. In principle, it is necessary to take into account all modes jα which
contribute to the 1st order Doppler shift. Since the phases ϕjα in the mode velocities (see Eq. 5.7)
are uncorrelated and unknown, it is not feasible to determine the shift and hence the maximum
temperature for an ion number i ≥ 2. Therefore, a single trapped ion is assumed. In this case
|β′jα,i|= 1 and the cosine dependence is neglected and set to 1.
For the 370 nm cooling transition, the used detuning is ∆0,370 ≈ −Γ370/2 = −2π × 9.8 MHz.
The maximum mode temperature Tα,max,Yb can then be calculated via

kj

√
2kBTjα/mYb ≤ k370

√
2kBTjα/mYb

!
= |∆0,370|2 (5.58)

⇔ Tjα,max,Yb ≤
|∆0,370|2mYb

2k2
370kB

≈ 136 mK. (5.59)

As will be discussed in detail in the next section, the melting point of the ion crystal in the
configuration used during the spring clock campaign is estimated to be Tmelt ≈ 18 mK �
Tjα,max,Yb [66], above which the ions are not in a crystallized phase anymore. Therefore, the
linearization of the ytterbium scattering rate is most likely valid.
For the indium ions and the 230.6 nm detection transition, the maximum temperature Tjα,max,In

can be calculated using the detuning ∆0,230 ≈ −Γ230/2 = 2π × 180 kHz, such that

Tjα,max,In ≤
|∆0,230|2mIn

2k2
230kB

≈ 0.012 mK. (5.60)

This is a crucial result. Since Tjα,max,In � Tmelt, the linearization cannot be applied to all
times and hence all temperatures at which the ions are crystallized. Moreover, compared to the
ytterbium Doppler temperature TD,Yb ≈ 0.47 mK, it becomes clear that Tjα,max,In < TD,Yb. The
condition |δ1D|� |∆0| for the linearization can therefore only be fulfilled simultaneously for the
indium and ytterbium ions and transitions when the axial mode temperatures Tax,jα < Tjα,max,In.
Note that only the axial temperatures need to fulfill this condition since the 230 beam has no
projection on the radial modes.
To check whether this is the case in the experiment, indium scattering rates observed during the
spring clock campaign on the detection transition are compared to theoretical scattering rates
for a vanishing 1st order Doppler shift.
At first, the scattering rate Γ0,230 of a single indium ion (see Eq. 5.31) is calculated, which
assumes a vanishing Doppler shift and hence Tax,jα � Tjα,max,In

Γsc,230 =
2π × 360 kHz

2

s230

1 + s230 + (
2( 360 kHz

2
)

360 kHz )2
=

753982

s
. (5.61)

Here the saturation coefficient is s230 = 4, which equals the saturation of the indium ion due
to the 230 beam during the spring clock campaign. As presented in 3.2.4, ion scattering rates
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are measured using PMTs. Here one needs to consider that only a small fraction of all scattered
photons are collected by the detection system. This detection efficiency is described by a factor
ηdet. The factor contains all effects lowering the amount of collected photons such as the solid
element of the ion emission pattern covered by the lens system, losses in optical components
or the PMT’s quantum efficiency7. To compare experimentally observed scattering rates with
theoretical values as calculated above, ηdet needs to be determined. In general, the relation

Γsc,230,exp = ηdetΓsc,230 (5.62)

holds. Therefore, ηdet can be determined by the ratio of the experimentally observed scattering
rate Γsc,230,exp and the theoretical scattering rate Γsc,230 at a fixed saturation s230

ηdet =
Γsc,230,exp

Γsc,230
. (5.63)

To cancel the influence of the 1st order Doppler shift |δ1D| and hence the mode temperature Tα,
one can use the fact that the ion’s scattering rate saturates in the limit of high saturations s230

Γsc,230
s�1→ Γ230

2
(5.64)

Γsc,230,exp
s�1→ Γsc,230,exp,max, (5.65)

where Γsc,230,exp,max is the maximum experimentally observed PMT count rate. Γsc,230,exp can be
straightforwardly measured by increasing the power P230 ∝ s230 of the 230 beam and acquiring
the saturated count rate. Two scans, one at a detuning ∆0 ≈ 0 (black data) and the other one
at ∆0 ≈ −Γ230/2 (red data), as well as fitted saturation curves (solid lines) shown in Fig. 5.2.

Figure 5.2 Saturation scans of the 230.6 nm indium detection transition. To find the maximum
scattering rate Γsc,230,exp,max of one indium ion, the power P230 of the beam 230 is varied and
the corresponding PMT count rates are measured. Two data sets are acquired for the detunings
∆0 ≈ 0 (black data) and ∆0 ≈ −Γ230/2 (red data). Both sets are fitted using Eq. 5.66, from
which two values for Γsc,230,exp,max are determined. Figure used with changes under permission
of T. Nordmann.

7A thorough analysis of all these effects is presented by T. Nordmann et al. in [44].

54



5 MODELLING AND ANALYSIS OF SYMPATHETIC DOPPLER COOLING

Both data sets were fitted, also under the assumption of a vanishing 1st order Doppler shift,
using the fit function

Γexp(P230) = Γmax,exp

P230
P230,sat

1 + P230
P230,sat

+ ( 2∆0
Γ230

)2
. (5.66)

Here Γmax,exp and P230,sat are free fit parameters, from which Γsc,230,exp,max and the saturation
power (with P230/P230,sat = s230) can be determined. The resulting fits show a good agreement
with the experimental data, which indicates that the assumption of a vanishing 1st order Doppler
shift could be valid. Or to be conservative, that the axial mode temperatures Tax,α are on the
order of Tα,max,In. From both fits, the maximum experimental scattering rate Γmax,exp are
determined to be (6784± 97)/ s and (6717± 122)/ s for the black and red fit respectively, while
the saturation powers P230,sat yield (0.564 ± 0.015)µW and (0.479 ± 0.014)µW (uncertainties
from fitting). Both saturation powers are on the order of 0.5µW, such that a saturation of
s230 = 4 is reached for P230 = 2µW, which was used during the indium detection in the spring
clock campaign.
To determine the detection efficiency, the mean of both values is used, such that

Γsc,230,exp,max =
6750± 80

s
. (5.67)

Now, ηdet can be calculated using Eq. 5.63 as well as Γ230

ηdet =
Γsc,230,exp,max

Γ230
2

=
6750/s

2π × 180 kHz
≈ (6± 0.07)× 10−3. (5.68)

Finally, to verify that the experimentally observed scattering rate at s230 = 4 agrees with
the theoretical value calculated in Eq. 5.61, line scans of the σ± Zeeman transitions of the
230 nm detection transition are analyzed. These line scans were acquired during the spring clock
campaign and show an average count rate of Γsc,230,exp ≈ (4400± 200)/s (after subtracting the
background count rate) at the detuning ∆0,230 = −Γ230/2. The average count rate is determined
by interpolating between two data points acquired close to the detuning ∆0,230 to estimate the
count rate at ∆0,230. Due to the interpolation, the uncertainty is assumed to be ≈ ±5 %. From
this average count rate, the corresponding total scattering rate can be calculated using Eq. 5.62

Γsc,230,exp = ηdetΓsc,230 (5.69)

⇔ Γsc,230 =
Γsc,230,exp

ηdet
(5.70)

≈ (740000± 30000)

s
,

in good agreement with the theoretical scattering rate determined in Eq. 5.61. As a result, axial
mode temperatures on the order of Tjα,max,In seem to be realistic. Therefore, the linearized
model for the indium detection transition will be applied in the temperature analysis of the
corresponding detection phase.

5.1.5 Calculation of geometric factors ξ

To take into account the angular dependence of the dipole emission, the geometric factors
ξYb,rad1/2 and ξIn,rad1/2 radial plane as well as ξYb,ax and ξIn,ax for the axial direction are cal-
culated. For the calculation, it is important to consider both dipole emission patterns for π−,
and σ− emission. When the emitted light is purely linearly polarized, i.e. for a closed Zeeman
transition with ∆mF = 0, the angular distribution of the emitted photons is given by [25]

fπ(θ, φ) =
3

8π
sin(θ)2, (5.71)
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where θ ∈ [0, π) is the azimuth angle with respect to the quantization axis given by the direction
of the bias magnetic field B (which is parallel to the z), and φ ∈ [0, 2π) the polar angle. For a
purely circularly polarized light, i.e. for as closed |∆mF |= 1 transition as it is the case for the
stretched state indium detection transition, the pattern is given by

fσ(θ, φ) =
3

16π
(1 + cos(θ)2). (5.72)

As can be seen, there is no explicit dependence of φ, resulting in a rotational symmetry around
the z-axis. Moreover, both distributions are normalized∫

S2

fπ(θ, φ)dΩ =

∫
S2

fσ(θ, φ)dΩ = 1, (5.73)

where S2 is the 2-sphere and dΩ = sin(θ)dφdθ the solid angle element. Therefore, fπ(θ, φ)
and fσ(θ, φ) represent probability distributions for the emission of a photon into the solid angle
dφdθ. Following [63], the geometric factors ξ can be calculated by the second moment of the
respective coordinate with respect to the given emission pattern. Here the second moment is a
measure of the directional spread of photons in the process of spontaneous emission. E.g. for
the calculation of ξz,σ, the geometric factor for emission along the z-axis assuming a circular
polarization of the emitted light field, the second moment can be calculated by

ξz,σ =

∫
S2

z2f(θ, φ)dΩ =

∫
S2

cos(θ)2f(θ, φ)dΩ, (5.74)

where in the last step the cartesian z-coordinate was replaced with its representation in spherical
coordinates using the basis

r =

xy
z

 =

sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

 . (5.75)

At first, the geometric factors for the indium detection transition ξIn,rad1/2 and ξIn,ax are calcu-
lated. To drive both stretched state transitions 1S0 → 3P1, |mF,g = ±9/2〉 → |mF,e = ±11/2〉,
the 230 beam is circularly polarized. Since the B field is pointing along the z− axis, using
fσ(θ, φ), ξIn,ax is given by the second moment of the z−component

ξIn,ax =

∫
S2

z2fσ(θ, φ)dΩ (5.76)

=
3

16π

∫ π

0

∫ 2π

0
cos(θ)2(1 + cos(θ)2)sin(θ)dφdθ (5.77)

=
2

5
. (5.78)

Moreover, due to the rotational symmetry of fσ(θ, φ), the second moment of x and y are equal.
The symmetry also allows to choose the x/y−axes along the modes of the radial axes νrad1/2.
Hence, ξIn,rad1/2 can be calculated via

ξIn,rad1 =

∫
S2

x2fσ(θ, φ)dΩ (5.79)

=
3

8π

∫ π

0

∫ 2π

0
(sin(θ)cos(φ))2(1 + cos(θ)2)sin(θ)dφdθ (5.80)

=
3

10
= ξIn,rad2. (5.81)

The calculation of ξYb,rad1/2 and ξYb,ax is a bit more complicated since the the ground and excited
state of the 370 nm 2S1/2 → 2P1/2 cooling transitions are both J = 1/2 states. Therefore, there
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is no closed transition. After a transition from the ground to the excited state, the cooling
ion is in one of the |mF,e = ±1/2〉 substates. The ion can then decay into |mF,g = ±1/2〉 or
|mF,g = ∓1/2〉 under emission of linearly (∆mF = 0) or circularly (∆mF = ∓1) polarized light.
The fraction of light being emitted in each decay channel is given by the squared Clebsch-Gordan
coefficients c2

CG,0 and c2
CG,± of both Zeeman transitions. The respective radiation pattern are

then weighted by c2
CG,0 and c2

CG,± and summed up to arrive at the combined emission pattern
for the 370 nm cooling transition

f370(θ, φ) = c2
CG,0fπ(θ, φ) + c2

CG,±fσ(θ, φ) (5.82)

=

√
1

3

2
3

8π
sin(θ)2 +

√
2

3

2
3

16π
(1 + cos(θ)2) (5.83)

=
1

8π
(1 + sin(θ)2 + cos(θ)2︸ ︷︷ ︸

=1

) =
1

4π
. (5.84)

The resulting emission pattern is independent of θ and φ and hence spherically symmetric.
Using f370(θ, φ), ξYb,rad1/2 and ξYb,ax can be calculated. By analogy with the indium geometric
factors, ξYb,ax is given by the second moment of z and ξYb,rad1/2 by the second moment of x and
y respectively

ξYb,ax =

∫
S2

z2f370(θ, φ)dΩ (5.85)

=
1

4π

∫ π

0

∫ 2π

0
cos(θ)2 × sin(θ)dφdθ (5.86)

=
1

4π

2

3
2π =

1

3
(5.87)

ξYb,rad1 =

∫
S2

y2f370(θ, φ)dΩ (5.88)

=

∫
S2

x2f370(θ, φ)dΩ (5.89)

=
1

4π

∫ π

0

∫ 2π

0
(sin(θ)sin(φ))2 × sin(θ)dφdθ (5.90)

=
1

4π

4π

3
=

1

3
= ξYb,rad2. (5.91)

5.2 Clock sequence temperature analysis

After the model for sympathetic mode cooling was applied to the experimental conditions in the
indium clock setup, this section presents the results of a mode temperature analysis of the clock
sequence used in the spring clock campaign. In 5.2.1, basic calculation settings for the analysis
and used experimental parameters are discussed, followed by the analysis in 5.2.2. Finally, 5.2.3
briefly summarizes this section.

5.2.1 General calculation settings and used experimental parameters

In this subsection, the general calculation settings as well as experimental parameters used for
the temperature analysis of the clock cycle are presented.
At first, a Python code is written which calculates the time dependence of the axial and radial
mode temperatures Tax,α(t) and Trad1/2,α(t). As can be seen in Fig. 3.3, the saturation param-
eters s of all lasers are constant, except for the Doppler cooling phase where the saturation
parameters sH1/V ≡ sH1/V(t) of H1/V are ramped down linearly. The time dependence of the
phases for constant s can therefore be described by the analytical solution given in Eq. 5.12.
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Using the cooling and heating coefficients derived in subsection 5.1.2, for each temperature
dependence (axial and radial), a Python class is written. Both classes use the saturation coeffi-
cients of all contributing beams s, the initial mode temperature Tini,jα, the sum of the squared
eigenvector components Cax,α and Crad1/2,α of the ytterbium and indium ions as well as the
time spent in the respective phase as inputs. Since the radial mode Trad1/2,α(t) shows an explicit
dependence on the angle θ, this input is added to the radial temperature class. To simulate the
temperatures resulting from the saturation ramp in the cooling phase, two additional classes for
the radial and axial modes are written. Here the solution for time dependent cooling and heating
coefficients c0/1,jα(t) given in Eq. 5.17 is used. The time dependence of saturation coefficients
sH1/V of H1/V in c0/1,jα(t) is implemented by the ramp function

ramp(t) = 1− at, (5.92)

such that sH1/V(t) = sH1/V × ramp(t). Here a = t−1
ramp is the saturation ramp slope and tramp

the time in which the saturation is ramped down from the initial saturation sH1/V to 0. To
evaluate the integrals in Eq. 5.17, a simple Riemann sum is used, where the integrated time
interval is split into n parts. To find a proper number of integration steps n and also to test the
numerical integration, a dummy temperature dependence is calculated using both solutions in
Eqs. 5.17 and 5.12 assuming time independent saturation coefficients s. Here n = 5000 results in
a deviation of both solutions within < 1% by keeping reasonable calculation times of ≈ 1− 2 s.
These four classes for time dependent and independent s and for the axial and radial mode
temperatures are then used further to simulate single phases of the clock sequence as well as
parts of the sequence by concatenating multiple phases.
The input parameters for the simulation are chosen to agree with the experimental conditions
in the campaign. All the needed parameters related to the trapping confinement are gathered
in Tab. 6 [49] while the parameters related to the sequence are shown in Fig. 3.3.

Table 6 Confinement related experimental parameters for the spring clock campaign [49].

parameter value

configuration Yb-Yb-In-Yb/Yb-In-Yb-Yb
νrf 22 MHz

νax,Yb 275 kHz
νrad1,Yb 825 kHz
νrad2,Yb 802 kHz

θ 30◦

As shown in [42], smaller ratios νrad/νax lead to smaller cooling times for a fixed target tempera-
ture. Therefore, νrad1,Yb ≈ νrad2,Yb = 825 kHz is assumed and hence the worse cooling efficiency.
This also simplifies the analysis of the radial mode temperatures, because now the only depen-
dence on the specific mode axis is given by their projection onto the cooling beam V. In case of
the radial axis with νrad1 the projection is described by θ, while, due to the orthogonality, the
projection of the second axis is π/2− θ.
Now corresponding mode frequencies να, coefficients Cax,α and Crad,α as well as Lamb-Dicke
parameters ηIn,rad,α of the radial modes for the indium ion (assuming cos(θ) = 1 in Eq. 2.47)
are determined and shown in Tab. 7. The calculation is done using a Mathematica code written
by J. Keller based on the theory presented in 2.4.3.

Table 7 Calculated coefficients Cα for the axial and radial modes assuming νrad,Yb = 825 MHz
and νax,Yb = 275 MHz.
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mode index α 1 2 3 4

νrad,α (kHz) 657 757 790 1130
Crad,Yb,α 0.9839 0.9814 0.9907 0.0439
Crad,In,α 0.0161 0.0186 0.0093 0.9561
ηIn,rad,α 0.0276 -0.0277 -0.0191 -0.1617

νax,α (kHz) 287 480 687 943
Cax,Yb,α 0.8354 0.9717 0.8785 0.3144
Cax,In,α 0.1646 0.0283 0.1215 0.6856

As can be seen in Eq. 5.12, Cα scales the cooling coefficients c1 ∝ Cα and therefore the exponen-
tial decrease of the mode temperature Tα(t). Hence, Cα is a measure for the cooling efficiency
of the respective species in the mode α. This becomes clear in Fig. 5.3, where the mode eigen-
vectors of the axial and radial modes for the trapping parameters in Tab. 6 are shown. Here the
displacement of the ions (blue Yb+ and pink In+) from the equilibrium position is proportional
to their respective eigenvector components β′jα,i.

Figure 5.3 Radial and axial mode eigenvectors present during the spring clock campaign. For
the trapping parameters used during the spring clock campaign (see Tab. 6), radial and axial
mode eigenvectors are calculated. Blue and pink circles show ytterbium and indium ions. The
corresponding mode frequencies, coefficients Cα as well as radial indium Lamb-Dicke parameters
are shown in Tab. 7.

The larger the ytterbium eigenvector component, the larger the contribution of the each
ion to the motion in the mode, and therefore its contribution to cooling. While the radial
modes α = {1, 2, 3} show large eigenvector components for the ytterbium ions and just minor
contributions for the indium ions, the situation is opposite for α = 4. Here the motion is
dominated by the indium ion. As a result, this is the mode with the smallest coefficient Crad,Yb,α

(see Tab. 7) and hence the worst cooled. A similar situation is given for the axial modes. In
addition to the bad cooling efficiency, there is another interesting aspect motivating a thorough
temperature analysis of the radial mode α = 4. The corresponding large eigenvector component
of the indium ion results in a large Lamb-Dicke factor ηIn,rad,α (see Tab. 7 and Eq. 2.47). As
presented in 2.6, radial modes with large indium Lamb-Dicke factors contribute most to thermal
dephasing and hence to the temperature dependent loss of contrast. The temperature analysis
is therefore done for the worst cooled radial and axial modes. The resulting temperatures Tα
can be seen as an upper bound for the temperatures of all modes. In the following, the explicit
dependence on α is dropped and all temperatures are calculated for α = 4.
Before the clock cycle can be analyzed, another important assumption needs to be made. In
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addition to the ion-light interaction as well as the mode structure, the initial temperature Tini

determines the mode temperature’s time dependence. Here the results of a crystal melting point
analysis done by L. Rüffert gives a helpful orientation [66]. The melting point Tmelt ≈ 18 mK
can be understood as the maximum temperature above which the ions either start to change
the configuration (change their position within the linear chain) or undergo a transition in an
uncrystallized phase. Although the crystal is still cooled above Tmelt, this case is not of interest
for the temperature analysis since a change of configuration or a phase transition are detected
in the clock sequence and trigger an invalidation of the current cycle (see 3.3). Therefore under
the assumption that thermal energy is equally distributed to all modes in the beginning of each
simulation, Tmelt ≈ 18 mK will be used as an upper bound for the initial mode temperatures
Tini for the axial and radial modes.

5.2.2 Clock sequence temperature analysis

As shown in section 3.3, the clock sequence consists of four branches accounting for situations
which can occur during clock operation. Which branch is used depends on whether the crystal
melted/changed its configuration between two cycles, or if the indium ion decayed back into the
ground state after the previous clock interrogation. In principle, since only branch 1 is evaluated,
its phases determine the temperature of the ions before the start of (and during) the clock inter-
rogation. This assumption is only true, if reproducible temperatures are reached reached within
one cycle of the sequence branch 1, independent of the foregoing used branch. The assumption is
verified in 5.2.2.1, where the mode temperatures during the cooling phase are calculated for the
worst case initial temperatures Tini = Tmelt. To obtain more realistic initial temperatures of the
Doppler cooling phase and to analyze their impact on the mode temperature time dependence,
in 5.2.2.2, the ytterbium and indium detection phases are simulated. 5.2.2.3 further analyzes
the indium detection phase and its impact on the radial mode temperatures. In 5.2.2.4, the
time dependence of the mode temperatures for the complete sequence branch 1 is determined.
Here minimum initial mode temperatures Topt � Tmelt are found which describe the case of
optimal experimental conditions. These temperatures result solely from the phases in branch 1,
neglecting possible disturbances such as heating by background gas collision. Lastly, in 5.2.2.5,
the influence of experimental imperfections on the mode temperatures given by cooling laser
frequency and intensity fluctuations are analyzed, followed by 5.2.2.6, where a first comparison
of the determined radial temperatures with experimental data is done.

5.2.2.1 Analysis of the Doppler cooling phase for worst case initial temperatures
Tmelt

The Doppler cooling phase is simulated which consists of tconst s = 25 ms Doppler cooling
at constant saturation sH1/V for the beams H1/V (constant s phase) and afterwards a sat-
uration ramp within tramp = 25 ms (ramped s phase) for the worst case mode temperature
Tini,ax = Tini,rad = Tmelt. The resulting time dependencies are shown in Fig. 5.4. Here the mode
temperatures are simulated for the trap axes orientation in the spring campaign shown by the
yellow (θ = 30◦) and red (θ = 60◦) curves as well as the axial temperature (blue dashed line).
Due to the assumption νrad1 = νrad2, the mode temperatures of both trap axes can be calculated
by adjusting the input parameter θ. Every pair of angles θ adding up to 90◦ describes a specific
trap axes orientation. Hence, θ = 30◦ describes the modes along the radial axes with νrad1 and
with θ = 90◦ − 30◦ = 60◦ the temperatures of the orthogonal radial axis. In addition, radial
temperatures for an equal projection of θ = 45◦ (green) on both radial axes as well as extreme
cases θ = {1◦, 89◦} (dash-dotted, light blue and light green) are plotted. The time dependence
of sV is plotted as dark blue solid line, sH1 is not shown since there is a fixed ratio sH1/sV ≈ 1/3.
The location of the cooling phase within branch 1 is shown by the time line in the bottom. As
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can be seen in Tab. 8, the final temperatures of the cooling phase are below 1 mK, except for
the case of θ = 89◦ where the second principal axis is nearly orthogonal to V.

Figure 5.4 Time dependence of the axial and radial mode temperatures in the Doppler cooling
phase assuming initial mode temperatures Tini = Tmelt = 18 mk. The axial mode temperatures
are shown as blue dashed line, the radial temperatures for different principal axes orientations θ
as dash dotted and solid lines. The time dependence of the saturation coefficient sV is shown as
dark blue line. The cooling phase within the clock sequence branch 1 is shown by the time line
in the bottom. Resulting end temperatures of the Doppler cooling phase Tend as well as selected
temperature differences are shown in Tab. 8.

Table 8 Final temperatures Tend and selected temperature differences of the cooling phase
assuming Tini = Tmelt (see Fig. 5.4), all temperatures in mK.

mode 0◦ 30◦ 45◦ 60◦ 89◦ axial

Tend,const s 0.55 0.61 0.71 1.01 9.43 1.07
Teq,const s 0.55 0.61 0.71 0.97 4.13 1.07

Tend,const s − Teq,const s 0 0 0 0.04 5.30 0
Tend 0.37 0.42 0.50 0.73 6.52 0.70

Tend,const s − Tend 0.18 0.19 0.21 0.28 2.91 0.37

Here a clear trend of increasing end temperatures Tend for increasing angles θ can be observed.
In addition, the increase of Tend for large angles θ is overproportional compared to the decrease
for small projections. Both effects are a result of a decreasing contribution of V for increas-
ing values of θ. This can be explained by the dependence k2

V,rad ∝ cos(θ)2 (Eq. 5.24) of V’s
contribution to the radial cooling coefficient c1,rad,370 (Eq. 5.40), while its contribution to the
heating coefficient c0,rad,370 (Eq. 5.34) via spontaneous emission is independent of θ. Therefore,
θ = 45 yields the best trade-off regarding Tend for the modes of both radial axes. Besides the
influence of θ on the radial end temperatures, a clear decrease of the cooling rate (or efficiency)
can be observed for a decreasing V projection. While for θ = 0◦ the end temperature of the con-
stant s phase Tend,const s is equal to the corresponding equilibrium temperature Teq,const s within
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t ≈ 9 ms, for the worst projection θ = 89◦, an equilibrium is not reached for the full constant
s time tconst s = 25 ms (see Tab. 8). For the projections of θ = {30◦, 60◦} used in the clock
campaign as well as for θ = 45, Tend,const s ≈ Teq,const s.
Regarding the axial modes, the cooling dynamics are faster compared to the radial modes. The
high cooling efficiency is a result of a good projection of H1 (φ = 23◦) onto the axial modes
and the coefficient Cax,Yb ≈ 0.31, which is roughly eight times larger than the radial coefficient
Crad,Yb ≈ 0.04. On the other hand, the axial equilibrium temperature Teq,const s = 1.07 mk is
higher than the corresponding radial temperatures for θ ≤ 60◦. This is a consequence of the
orthogonality of the axial modes and V. Therefore, V does not contribute to the cooling coeffi-
cient c1,ax,370 but to the heating coefficient c0,ax,370 (see Eqs. 5.43 and 5.50) which leads to an
increased equilibrium temperature Teq ∝ c0 (see Eq. 5.14).
Also the influence of the saturation ramp can be observed in Fig. 5.4. Within the ramped s
phase (tconst s < t ≤ 50 ms), all investigated mode temperatures are further decreased by ≈ 30%
compared to the end temperature Tend,const s of the constant s phase (see Tab. 8). This tem-
perature decrease is only possible due to the time dependent decrease of the saturation which
results in a continuous decreases of the equilibrium temperature. Without the saturation ramp,
i.e. keeping sH1/V constant, the additional 25 ms of cooling time would not further decrease the
temperature of all modes except for the extreme case of θ = 89◦. Note that an equal projection
θ = 45◦ of both radial axes onto V might also be advantageous regarding a decrease of tconst s.
For this trap axes orientation, the radial modes reach equilibrium after t ≈ 15 ms such that the
remaining 10 ms spent at constant saturation has no influence on the respective temperature
Tend,const s. This fact will be subject of the optimization of the clock sequence presented in sec-
tion 5.3.
All axial modes as well as radial modes for θ ≤ 60◦ reach (or are close to) equilibrium in the
constant s phase assuming the worst case initial temperature Tini = Tmelt. Therefore, final
temperatures of the ramped s phase and hence the end temperatures of the whole cooling phase
Tend are reproducible within one clock cycle and hence robust against the worst case initial tem-
peratures. In addition, within the validity of the model one can conclude that the indium ion’s
temperature during the clock interrogation is completely independent of chosen branches in the
previous cycles such as reordering or rescue events in the sequence branches 3 or 4. Therefore,
the analysis will be carried out in the following for the phases of branch 1. Note that the analysis
of the extreme cases θ = 0◦, 89◦ will be neglected in the following, as they are not relevant for
the experiment due to the bad cooling efficiency of the modes for θ ≈ 90◦. Since the orientation
θ = 45◦ showed interesting properties regarding the cooling efficiency and resulting end temper-
atures, its analysis is continued.

5.2.2.2 Analysis of the mode temperatures during the In+ and Yb+ detection phases

So far, the end temperatures of the Doppler cooling phase were calculated for the worst case
initial temperature Tini = Tmelt. Next, the influence of the Yb+ and In+ detection phases on
the initial temperatures of the Doppler cooling phase are analyzed. As presented in 3.3, the
ytterbium detection is used to detect whether the crystal melted or changed its configuration
in the previous cycle. If such an event is detected, rescue or reordering attempts are started
and the indium ion is not probed. The ytterbium detection therefore acts as a temperature
filtering phase for temperatures T > Tmelt. For the simulation of both detection phases, the
initial temperature of the ytterbium detection is chosen to be Tini = Tmelt, as it is the highest
accepted temperature for branch 1 in the clock sequence. In Fig. 5.5, the time dependencies of
the radial mode temperatures are plotted for θ = {30◦, 60◦, 45◦} as well as the temperature of
the axial modes. Note that the indium optical pumping phase is neglected, since its duration
tpump = 1 ms is negligible compared to tIn+det = 20 ms. In addition, due to the frequency ramp,
it is not possible to make a proper statement on the 230 nm scattering rate.
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Figure 5.5 Time dependence of the axial and radial mode temperatures within the ytterbium and
indium detection phases assuming an initial temperature Tini = Tmelt. The final temperatures
of both phases are shown in Tab. 9.

Table 9 Final temperatures of the ytterbium and indium detection phases assuming an initial
temperature of the ytterbium detection of Tini = Tmelt (see Fig. 5.5), temperatures in mK.

mode 30◦ 45◦ 60◦ axial

Tend,Yb+det 0.69 1.17 3.36 1.07
Tend,In+det 1.15 1.53 2.58 0.03

The corresponding end temperatures Tend,Yb+det and Tend,In+det of the ytterbium and indium
detection phases are shown in Tab. 9. It can be seen that the ytterbium detection significantly
reduces the initial temperatures and hence contributes to cooling. Although the detection is
just tYb+det = 8 ms long, the end temperatures Tend,Yb+det ≈ Teq,const s for the axial modes as
well as for the radial modes with θ = 30◦ (compare with Tab. 8). This can be explained by the
saturation coefficients sV/H1 used in the ytterbium detection which agree with the saturations
during the constant s phase of Doppler cooling. The ytterbium detection can therefore be seen
as an additional cooling phase at constant saturation. For the indium detection, the temperature
dynamics of the radial and axial modes differ. While for θ = 60◦ the temperature is further
decreased until the end of the indium detection, for θ = {30◦, 45◦} the opposite can be observed.
For these two orientations, the mode temperatures are increased until an equilibrium Teq,In+det is
reached which agrees with the corresponding temperature Tend,In+det ≈ Teq,In+det. The observed
radial temperature dynamic is a consequence of a decreased 370 nm saturation (sV = 0.5 and
sV ≈ 0.2) in the presence of indium fluorescence on the 230 nm transition at s230 = 4. Since
the 230 beam is parallel to the trap axis, the indium fluorescence results in heating of the radial
modes via the heating coefficient c0,rad,230 (see Eq. 5.35) while there is no contribution to the
radial cooling coefficient c1,rad (Eq. 5.40). The increased heating coefficient as well as decreased
cooling coefficient (due to decreased sV/H1) then leads to an increased equilibrium temperature
Teq,In+det. Since Tend,Yb+det > Teq,In+det for θ = 60◦ the corresponding modes are further cooled,
while for θ = {30◦, 45◦} the modes are heated (Tend,In+det < Teq,In+det).
For the axial modes, a steep temperature drop to 0.03 mK can be observed, which is about two
orders of magnitude lower than the axial end temperatures of the Doppler cooling phase (see
Tab. 8). This is a consequence of the narrow 230 nm transition (Γ230 = 2π×360 kHz compared to
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Γ370 = 2π×19.6 MHz) which results in a reduced equilibrium temperatures compared to cooling
solely on the 370 nm transition. Moreover, the indium ion has a large eigenvector component in
the investigated axial mode α = 4 (see Fig. 5.3) which results in a high coefficient Cax,In,α ≈ 0.686
and fast cooling dynamics. Here one can say that the axial temperature dynamic is dominated
by direct cooling on the indium detection transition.
At this point, it is important to mention that the time dependence as well as the final temperature
on the radial modes can only serve as an orientation of dynamics resulting from the 230 nm
fluorescence. As concluded in section 5.1.4, the used linearization of the indium scattering rate
is valid only for temperatures Tα,max,In < 0.012 mK. Since the calculated axial temperature is
above this limit, the model loses validity. The only statement which can be made is that the
axial mode temperatures are likely close to an equilibrium, since the experimentally observed
indium scattering rates agree with the maximum theoretical scattering rates. This equilibrium
temperature could be on the order of T = 100µK as observed experimentally by E. Peik in
[67]. Moreover, since the axial mode frequencies νax,α shown in Tab. 7 are on the order of
the linewidth Γ230/(2π) of the indium detection transition, a rate equation model based on
Doppler cooling theory is not a proper description anymore. Here the temperature dynamics is
in an intermediate regime between Doppler and of resolved sideband cooling (see e.g. [31]), the
simulation of which is beyond the scope of this analysis.

5.2.2.3 Analysis of radial heating due to In+ detection

Since the indium detection induces heating of the radial modes, the corresponding heating
coefficient c0,rad,230 is analyzed. Here the maximum scattering rate for s230 = 4 is assumed,
because it agrees with experimental observations (see section 5.1.4). To see the pure effect
of radial heating due to the indium fluorescence, vanishing saturation coefficients sV/H1 are
assumed (≈ 10−6 in the simulation) by keeping the fixed ratio sH1/sV. Using the determined end
temperatures Tend,Yb+det as initial temperatures, the time dependence of the radial temperatures
is shown in Fig. 5.6.

Figure 5.6 Time dependence of the radial mode temperatures during the indium detection phase
for vanishing saturations sV/H1. Without the presence of the ytterbium cooling beams V and
H1, the radial modes are heated by the indium fluorescence.

Here a linear increase of the radial temperatures as a function of time can be observed, while
the slope (or radial heating rate) is given by ≈ 0.34 mK/ms. The linearity is the result of a
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constant heating rate due to the indium fluorescence at a constant scattering rate Γsc,230(s230 =
4) (see Eq. 5.31). The slope corresponds to the radial heating coefficient c0,rad,230, as can be
seen from the general solution of Tα(t) for time independent coefficients c0,1 (Eq. 5.12). In the
limit of sV/H1 → 0, c1,rad → 0. Now, the exponential function in Eq. 5.12 can be expanded to
1st order in c1,rad such that

Trad(t) =

[
Tini +

c0,rad

c1,rad

]
ec1,radt −

c0,rad

c1,rad
(5.93)

c1,rad→0
≈

[
Tini +

c0,rad

c1,rad

]
(1 + c1,radt)−

c0,rad

c1,rad
(5.94)

= Tini(1 + c1,radt) + c0,radt
sV/H1→0
≈ Tini + c0,rad,230t. (5.95)

Therefore, the heating rate is given by c0,rad,230 ≈ 0.34 mK/ms which agrees with the numerical
value of this coefficient in the simulation. Here it can be concluded, that the indium detection
contributes significantly to heating of the radial modes. To compensate for radial heating during
the indium detection, the saturation coefficients sV/H1 could be increased. Such an optimization
is subject of the clock sequence optimization in 5.3.

5.2.2.4 Mode temperature simulation of the complete sequence branch 1

After the simulation of the ytterbium and indium detection yielded end temperatures Tend,In+det

and hence initial temperatures of the cooling phase Tini ≤ 2.5 mK� Tmelt (Tab. 9), the complete
branch 1 is simulated. This simulation aims for the initial temperatures Topt and resulting end
temperatures of the cooling phase under optimal experimental conditions without any external
influences. Here external influences are e.g. collisions with background gas molecules which
could lead to temperatures on the order of Tmelt and hence the use of sequence branches 3 or
4. The simulation is split into two parts. At first, Topt are determined in a simulation of the
whole sequence branch 1. In a second simulation, the resulting end temperatures of the Doppler
cooling phase for Tini = Topt are calculated.
The end of the clock interrogation is chosen to be the starting point of the first simulation. Due
to a vanishing external heating rate, it is assumed that the mode temperatures are constant
during the 150 ms clock pulse. The initial temperatures of the simulation are hence the end
temperatures of the Doppler cooling phase given in Tab. 8. As can be seen in Fig. 3.3, the
following phases in branch 1 are an indium detection and, after the restart of the sequence, an
ytterbium detection followed by another indium detection. The simulation of all three phases is
shown in Fig. 5.7
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Figure 5.7 Simulation of the axial and radial mode temperatures in sequence branch 1 excluding
the Doppler cooling phase. Starting point of the simulation is the end of clock pulse. Since
the external heating rate is neglected, the mode temperatures remain unchanged during the
clock interrogation. The end temperatures of this phase are therefore assumed to be the end
temperatures of the Doppler cooling phase given in Tab. 8. These temperatures are used as
initial temperatures of the simulation starting with the first indium detection (t = 0). The end
temperatures of this phase Tend,In+det, the following ytterbium detection Tend,Yb+det and the
second indium detection Tend are given in Tab. 10.

Table 10 Final mode temperatures for the simulation of the phases in clock sequence branch 1
(see Fig. 5.7), temperatures in mK.

mode 30◦ 45◦ 60◦ axial

Tend,In+det 1.15 1.53 2.53 0.03
Tend,Yb+det 0.61 0.73 1.19 1.07
Tend =: Topt 1.15 1.53 2.54 0.03

As can be seen, under optimal experimental conditions, the axial and radial mode temperatures
are ≤ 2.5 mK throughout the whole sequence branch 1. In addition, an opposing temperature
behavior for the radial and axial modes can be observed. While the radial modes are heated
during the indium detection phases and cooled during the ytterbium detection, the situation is
opposite for the axial modes. The final temperatures after the second indium detection Tend and
hence optimal initial temperatures of the Doppler cooling phase, denoted as Topt in the following,
as well as end temperatures of each simulated phase are shown in Tab. 10. By comparison of
Topt with the initial temperatures determined in Fig. 5.5 (see Tend,In+det in Tab. 9), one can see
that the temperature differences are negligible. This is the case, although the initial temperature
of the ytterbium detection was assumed to be Tmelt. Therefore, it can be concluded, that the
ytterbium and indium detection phases are long enough to reach reproducible temperatures
within branch 1 already before the the Doppler cooling phase starts.
Since Topt are determined, the Doppler cooling phase is again simulated to determine the mode
temperatures present during clock interrogation under optimal experimental conditions. The
simulation and resulting temperatures are shown in Fig. 5.8 and Tab. 11.
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Figure 5.8 Simulation of the mode temperatures in the Doppler cooling phase assuming initial
temperatures Tini = Topt. For optimal initial mode temperatures as shown in Tab. 10, all modes
reach an equilibrium already within tconst s ≈ 15 ms. The end temperatures of Doppler cooling
phase agree with the temperatures calculated for the worst case initial temperatures Tini = Tmelt

of the simulation shown in Fig. 5.4 (see also Tab. 8). The calculated mode temperatures of the
constant s and ramped s phases as well as selected temperature differences are shown in Tab. 11

Table 11 Final temperatures Tend of the constant s and ramped s phases in the Doppler cooling
phase assuming Tini = Topt (see Fig. 5.8), temperatures in mK.

mode 30◦ 45◦ 60◦ axial

Tend,const s 0.61 0.71 0.98 1.07
Teq,const s 0.61 0.71 0.97 1.08

Tend,const s − Teq,const s 0 0 0 0
Tend 0.42 0.50 0.73 0.70

Tend,const s − Tend 0.19 0.21 0.25 0.37

By comparing the temperatures in Tab. 11 with the temperatures determined for the same phase
but with Tini = Tmelt (see Tab. 8), one can see that the end temperatures of both phases (con-
stant s and saturation ramp) agree with each other. Interestingly, the axial mode temperatures
are ≤ Teq,const s throughout the whole constant s phase. This shows that the Doppler cooling
phase is rather a "Doppler heating" phase for the axial modes. After t ≈ 15 ms cooling at
constant s, there is no significant temperature change for all considered modes. This indicates,
in case of Tini = Topt, that the constant s phase could reduced by ≈ 10 ms without affecting the
end temperatures.

5.2.2.5 Influence of cooling laser frequency and intensity fluctuations

Until now, all the simulations were done for fixed detunings ∆0,370 and ∆0,230 as well as fixed
saturation coefficients sV/H1 and s230. Under real experimental conditions, the laser frequencies
as well as powers (and hence saturation coefficients) fluctuate over time. To include such exper-
imental imperfections in the temperature analysis of the cooling phase, frequency and intensity
fluctuations of the 370 nm laser are analyzed in the following.
To take into account the influence of frequency fluctuations on the cooling phase, the 370 nm

67



5 MODELLING AND ANALYSIS OF SYMPATHETIC DOPPLER COOLING

laser is stabilized to the fixed detuning ∆0,370 relative to resonance frequency using a wavemeter
lock. Here the resonance is determined from a line scan of the 370 nm transition. While locked,
frequency data is logged over several hours to acquire a histogram. Afterwards, the data is fitted
using a Gaussian normal distribution. The fit results in a standard deviation of σf ≈ 1.338 MHz,
the mean value is assumed to be 0, due to calibration of the frequency lock via a line scan. To
investigate the impact of the frequency distribution on the Doppler cooling phase, final tem-
peratures of the radial modes for θ = {30◦, 45◦, 60◦} and the axial modes are calculated for
different detunings ∆f within the distribution, such that ∆0,370 → ∆0,370 + ∆f =: ∆f fluct. The
simulation is done for the two discussed cases Tini = Topt and Tini = Tmelt and shown in Fig. 5.9.

Figure 5.9 End temperatures of the Doppler cooling phase in the presence of frequency fluctu-
ations. Wavemeter lock data is evaluated to investigate the influence of frequency fluctuations
on the end temperatures of the Doppler cooling phase. The data is plotted as a histogram (light
green) and fitted using a Gaussian distribution. The fit (solid green line) yields a standard
deviation of σf ≈ 1.338 MHz, the mean value µf ≈ ∆0,370 is set to 0. For detunings ∆f within
the distribution, radial and axial end temperatures are calculated assuming Tini = Topt (top)
and Tini = Tmelt (bottom).

It can be observed that the end temperature of all modes are increasing for large detunings
|∆f |, the temperature increase is larger for ∆f > 0 than for ∆f < 0. Since for positive ∆f ,
|∆f fluct|< |∆0,370|, the friction coefficient ρ (Eq. 5.5) in the cooling coefficient c1 is decreased,
while the scattering rate Γsc,370 is increased. For negative ∆f , |∆f fluct|> |∆0,370| which results in
an increased friction coefficient ρ but a decreased scattering rate. These effects result in increased
equilibrium temperatures. The minimum end temperatures are calculated for ∆f ∝ −2MHz,
not for a vanishing ∆f , which is a result of the saturation broadened linewidth [22] of the
cooling transition due to the total saturation coefficient seff = sV +sH1. Regarding the influence
of both assumed initial temperatures Tini = Topt and Tini = Tmelt, there are no significant
differences in the end temperatures. For a quantitative analysis, the mean mode temperatures
〈Tend,f fluct,Topt〉 and 〈Tend,f fluct,Tmelt

〉 are calculated for both assumed initial temperatures using
the fitted distribution. In addition, the mean mode temperatures for frequency fluctuations are
determined under the assumption of a twice as broad frequency distribution (σ = 2σf ). For the
broader distribution, the mode temperatures are reevaluated for ∆f/(2π) ∈ [−8,+8] MHz. This
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calculation is done to investigate the impact of less ideal locking conditions which could lead to
a broadening of the distribution. The resulting mean temperatures are shown in Tab. 12. In
addition, the end temperatures calculated in Fig. 5.8 for optimal experimental conditions are
given as reference temperatures Tend,ref .

Table 12 Mean final temperatures 〈Tend〉 of the cooling phase assuming Tini = Topt and Tini =
Tmelt in the presence of frequency fluctuations ∆f (see Fig. 5.9), temperatures in mK.

mode 30◦ 45◦ 60◦ axial

Tend,ref 0.42 0.50 0.73 0.70
〈Tend,f fluct,Topt〉 0.42 0.51 0.74 0.71
〈Tend,f fluct,Tmelt

〉 0.42 0.51 0.74 0.71
〈Tend,f fluct,2σ,Topt〉 0.44 0.53 0.78 0.74
〈Tend,f fluct,2σ,Tmelt

〉 0.44 0.53 0.78 0.74

Compared to the reference temperatures, the calculated mean temperatures are equal in case of
a distribution with σ = σf and ≈ 5% higher for the worse case of σ = 2σf , while the calculated
mean temperatures are the same for both assumed initial temperatures. This shows that the
cooling phase is long enough to cover a large range of initial temperatures. In addition, due to the
small deviations within a few percent, the presence of frequency fluctuations has no significant
influence on the end temperatures of the cooling phase.
To investigate the influence of intensity-, and hence saturation fluctuations, the intensity IV

of the Beam V is stabilized to the saturation intensity Isat,V (corresponding to the desired
saturation sV = 1) and logged over several hours. The data is then normalized by Isat,V to
acquire a histogram of the sV fluctuations. Here it is sufficient to log the saturation in V, since
sV and sH1 have a fixed ratio sH1/sV ≈ 0.3. As for the intensity fluctuations, the histogram
is fitted with a Gaussian distribution, where a standard deviation σs ≈ 0.02 and a mean value
µs = 0.975 is obtained. Again, for saturation values sV within the distribution, final mode
temperatures of the Doppler cooling phase for Tini = Topt and Tini = Tmelt are calculated. Using
these temperatures, the mean temperatures 〈Tend,s fluct,Topt〉 and 〈Tend,s fluct,Tmelt

〉 are determined
using the fitted distribution function. The results are shown in Fig. 5.10 and Tab. 13.
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Figure 5.10 End temperatures of the Doppler cooling phase in the presence of 370 nm beam
saturation fluctuations. By analogy with the analysis of frequency fluctuations in Fig. 5.9, the
saturation sV of the Doppler cooling beam V is logged over several hours. The resulting data
is plotted as histogram (light violet) and fitted (solid violet line) using a Gaussian distribution.
From fitting, a standard deviation σs ≈ 0.02 and a mean value µs = 0.975 is obtained. Using
saturation values sV within the distribution, end temperatures of the Doppler cooling phase are
calculated for initial temperatures Tini = Topt (top) and Tini = Tmelt (bottom). With the fitted
distribution, the mean temperatures for the radial and axial modes are calculated and shown in
Tab. 13.

As can be seen, observed saturation fluctuations do not have an influence on the end tem-
peratures of the cooling phase. The simulation yields a slight increase as a function of increasing
saturation values, which can explained by a decreasing friction coefficient ρ which results in an
increasing equilibrium temperature Teq ∝ ρ−1 (see Eq. 5.14). The increase is on the order of
≈ 1 . . . 2µK and therefore negligible.

Table 13 Mean final temperatures 〈Tend〉 of the Doppler cooling phase assuming Tini = Topt and
Tini = Tmelt in the presence of saturation fluctuations (see Fig. 5.10), temperatures in mK.

mode 30◦ 45◦ 60◦ axial

Tend,ref 0.42 0.50 0.73 0.70
〈Tend,sfluct,Topt〉 0.42 0.50 0.73 0.70
〈Tend,s fluct,Tmelt

〉 0.42 0.50 0.73 0.70

5.2.2.6 First comparison with experimental data

As presented in section 2.6, the radial temperatures of the indium ion during the clock pulse
can be extracted from Rabi flops by comparison with a theoretical model describing the effect
of thermal dephasing of Rabi oscillations. In Fig. 4.11 of 4.1.4, an experimentally acquired Rabi
flop is used to determine the clock transition Rabi frequency |Ω0| in the ac-Stark shift analysis
by comparison with the aforementioned model. The radial temperatures used for the theoretical
flops are chosen to be equal to the temperatures determined in this temperature analysis (see
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Tab. 11). The theoretical flops show good agreement with the data. Although this first analysis
is promising, more experiments are planned, to further verify the results and the validity of the
simulation, once the clock is "ticking" again.

5.2.3 Summary

To summarize the results of the analysis, it can be concluded that the mode temperatures
during the clock interrogation are completely determined by the cooling phase, regardless of the
conditions at the beginning of the clock cycle. As shown in Tab. 8 and 11, the end temperatures
barely differ for the worst case initial temperature Tini = Tmelt and optimal conditions Tini = Topt.
Also, when experimental imperfections such as frequency of intensity fluctuations of the 370 nm
beams are considered, the resulting increase of the mean mode temperatures could be bound to
≤ 5%. It was also shown that the ytterbium and indium detection phases significantly affect
the temperature dynamics of all modes, although the influences are different for the axial and
radial modes. Especially the indium detection contributes to axial cooling, while the 230 nm
fluorescence introduces a radial heating rate of ≈ 0.34 mK/ms. In the analysis of the whole
branch 1, the temperatures of all modes could be bound to ≤ 2.5 mK at the start of the Doppler
cooling phase, assuming optimal experimental conditions. The analysis has also shown that
the radial trap axes orientation with θ = 45◦ represents the best trade-off between the radial
mode temperatures of both principle axes, and in addition, could allow to reduce the time
tconst s and hence the total cooling time of the Doppler cooling phase. A first comparison with
experimentally acquired Rabi oscillations show good agreement with the determined radial mode
temperatures in this analysis. To completely verify the results, further analysis of experimental
data is necessary once the experiment is running again.
In the next section, possible optimizations of the clock cycle branch 1 are analyzed.

5.3 Optimization of sympathetic Doppler cooling

Besides the determination of the mode temperatures, the analysis of section 5.2 showed that
the current sequence could be improved by an adjustment of experimental parameters. In
the temperature analysis of the cooling phase in Fig. 5.8, it was observed that for the first
constant s phase, all modes reach an equilibrium already after ≈ 15 ms. The temperatures
remain unchanged for the following 10 ms of cooling time, until the saturation ramp starts
after tconst s = 25 ms. Hence, a possible optimization regarding cooling time could be done by
reducing tconst s. On the other hand, instead of a reduction of the total cooling time, the end
temperature could be further reduced by an increased time tramp while keeping the total cooling
time of 50 ms. The analysis of the detection phases showed that the indium detection significantly
contributed to heating of the radial modes via spontaneous emission. Here it would be interesting
to find optimal saturation parameters for sV/H1 to compensate radial heating due to the 230 nm
fluorescence. These are examples of possible optimizations analyzed in this section which is
structured as follows. At first, in 5.3.1, the indium detection phase is optimized via adjusted
saturation parameters s of the 370 nm beams to compensate for radial heating. 5.3.2 presents
the results of an optimization of cooling phase regarding minimum end temperatures for a fixed
cooling time and afterwards regarding minimized cooling time for fixed end temperatures. Lastly,
the influence of an exponential instead of a linear saturation ramp on the end temperatures of
the cooling phase is analyzed in 5.3.3 followed by 5.3.4, which briefly summarizes the results of
this section.

71



5 MODELLING AND ANALYSIS OF SYMPATHETIC DOPPLER COOLING

5.3.1 Compensation of radial heating during In+ detection

Since the 230 beam is parallel to the trap axis, it contributes considerably to cooling of the axial
modes, while the orthogonal radial modes are heated (see Fig. 5.7). This subsection aims for an
optimization of the 370 nm saturation parameter sV (and hence sH1 = 0.3sV) during the indium
dectection to compensate for radial heating due to the 230 nm fluorescence. Fig. 5.11 shows the
end temperatures of the radial modes in the indium detection phase for θ = {30◦, 45◦, 60◦} as a
function of sV, assuming the end temperatures of the ytterbium detection Tend,Yb+det in Tab. 10.

Figure 5.11 Radial end temperatures for the indium detection phase for varying saturation sV.
To counteract the effect of radial heating due to the indium fluorescence, the end temperatures
of the radial modes are calculated for different values of sV (and sH1 ≈ 0.3sV). For a saturation
of sV ≈ 0.8 − 0.9, a minimum of the calculated end temperatures can be observed, while the
minimum is shifted to higher values sV for larger angles θ and hence worse cooling efficiency.

For small (sV < 0.5) and large (sV > 1.5) values of sV, the calculated end temperatures are
rapidly increasing. For small values, the cooling rate due to both 370 nm beams V and H1 is
too small to compensate for the heating rate due to the 230 nm fluorescence. This results in
an increased equilibrium temperature Teq ∝ 1/c1 since the cooling rate c1 → 0 for sV/H1 → 0.
For large values of sV, heating due to the 230 nm fluorescence can be compensated, but now
the increase of seff = sV + sH1 leads to an increase of Teq ∝ ρ−1 ∝ s2

eff . Between these extreme
cases, an optimum can be found. For all three orientations θ, the end temperatures show minima
around sV ≈ 0.8 . . . 0.9, indicating that the saturation of sV = 0.5 in the current clock sequence
is not optimal. The minimum temperatures are reached at higher values sV for increasing θ. This
can be explained by the worse cooling efficiency for large values θ and hence worse projection
onto the radial cooling beam V. The end temperatures of the radial modes for sV = 0.8 are
shown in Tab. 14 together with the corresponding temperatures for sV = 0.5 as calculated in
Tab. 10.
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Table 14 Radial and axial end temperatures for sV = 0.5 and the optimized value sV = 0.8 as
well as resulting end temperature differences, temperatures in mK.

mode 30◦ 45◦ 60◦ axial

Tend,In+det (sV = 0.5) 1.15 1.53 2.53 0.03
Tend,In+det (sV = 0.8) 1.10 1.44 2.35 0.05

∆Tend,In+det 0.05 0.09 0.18 −0.02

The optimization yields a possible decrease of the radial end temperatures by ∆Tend,Yb+det on
the order of 4 . . . 8%. Note that changing sV to 0.8 results in a slight increase of the axial tem-
perature by 0.02 mK as a result of the increased axial heating coefficient c0,ax,370 (see Eq. 5.43).
As discussed in the previous section, this temperature is still far below the resulting axial end
temperatures of the following cooling phase. Therefore, the increase in the axial end tempera-
ture is considered negligible.
To conclude the results, an increase of the saturation sV can decrease the radial end tempera-
tures of the indium detection and hence the initial temperatures of the cooling phase by ≈ 5%.
Although this is just a small optimization regarding the end temperatures of the indium detec-
tion, the increase of seff also leads to an increase of the cooling rate c1,370. Therefore, increasing
seff during the indium detection also improves the temperature stability of the whole sequence
branch 1.
Here it is mentioned, that the experimentally observed 230 nm fluorescence drops for large 370 nm
saturations (sV � 0.5). This could be explained by an increased heating rate due to 370 nm
fluorescence and hence increased axial temperatures. The resulting 1st order Doppler shift of
the indium ions then leads to a decreased scattering rate and to a transition between Yb+ and
In+ dominated axial temperature regimes. To verify this hypothesis, further investigation is
necessary as well as a more sophisticated model.

5.3.2 Optimization of the cooling phase

This subsection presents the results of the optimization for the Doppler cooling phase. In general,
there are two quantities to be optimized, which have a direct impact on the performance of an
atomic clock, the total cooling time and the reached end temperatures. Longer cooling phases
reduce the duty cycle and hence increase the statistical uncertainty. Lower ion temperatures
yield a higher contrast and a reduced 2nd order Doppler shift. Therefore, it is important to find
a good compromise between short cooling times and temperature.
The optimization needs to take into account a large quantity of variables, such as the radial
trap axes orientation described by θ, the cooling beam saturation parameters s or the secular
frequencies, which affect the coefficients Cα. To reduce the amount of free parameters, some
are kept fixed in this analysis. Since the used 370 nm saturation coefficients of sV = 1 and
sH1 ≈ 0.3 yield a contrast of 90% for 10 ms clock pulses (see Fig. 4.1.4), and in general led to
an overall good performance of the clock during the spring clock campaign, both parameters
will be fixed throughout this subsection. Also, the secular frequencies will not be changed
to be able to compare the results to the analysis of the previous section. As indicated in the
previous section (see e.g. Fig. 5.8), adjusting the ratio of the cooling times tconst s and tramp could
either decrease the end temperature of the 50 ms cooling phase or allow a reduction of the total
cooling time tcool = tconst s + tramp at constant end temperatures. Therefore, the optimization
presented in the following uses tconst s and tramp as variable parameters. The analysis of possible
optimizations is done for the radial angles θ = {30◦, 60◦}, as these orientations were used during
the spring clock campaign, as well as for θ = 45◦, which showed the best compromise both
radial axes end temperatures. Moreover, since in general the axial modes showed faster cooling
dynamics compared to the radial modes, an optimization for the radial mode temperatures will
also result in an improvement for the axial modes. Since the axial modes do not contribute to
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the temperature dependent loss of contrast (see section 2.6) due to a missing projection on the
clock laser, the optimization is focused on the radial mode temperatures.
At first, end temperatures are calculated while the total cooling time tcool = tconst s + tramp =
50 ms is kept constant. Figure 5.12 shows the end temperatures for different saturation ramp
times tramp between 0 ms and 50 ms, assuming initial temperatures Tini = Topt. Note that
tramp = 0 ms refers to a cooling phase where sV/H1 are kept constant, while for tramp = 50 ms
both saturation parameters are ramped down throughout the whole cooling phase.

Figure 5.12 Radial end temperatures of the Doppler cooling phase for a fixed cooling time
tcool = 50 ms assuming Tini = Topt. The radial end temperatures of the Doppler cooling phase
are calculated for varying tconst s and tramp, such that tcool = tconst s + tramp = 50 ms. The
corresponding minima for θ = {30◦, 45◦, 60◦} are highlighted by dotted lines and shown in
Tab. 15.

For the radial end temperatures, a monotonic decrease for increasing ramp times tramp can
be observed, with a minimum at tramp = 50 ms, as highlighted by the dotted lines. In general,
there are two competing quantities, namely the cooling rate and the equilibrium temperature,
which are both functions of the 370 nm saturation. A high cooling rate for large saturations
results in fast cooling but high equilibrium temperatures. Once equilibrium is reached, only a
decrease of the saturation within ramped s phase can further reduce the mode temperatures.
On the other hand, smaller saturations, which decrease the equilibrium temperature, also yield
a decreased cooling rate. That the end temperatures are minimized for long ramp times shows
that the slower the decrease of the cooling coefficient c1 due to the saturation ramp is, the
better the mode temperatures can follow the decreasing equilibrium temperatures. Note that
the decrease of the saturation due to the saturation ramp is inversely proportional to tramp,
since the ramp slope is defined by a = t−1

ramp (see Eq. 5.92). Hence, the longest ramp time yields
the smallest saturation decrease per unit time. In a second simulation assuming the worst case
initial temperatures Tini = Tmelt, the radial end temperatures are the same as for optimal initial
temperatures. This shows that an increased ramp time tramp is not only advantageous regarding
the final temperatures of the cooling process, but also results in a similar robustness against high
initial temperatures. To compare the currently used Doppler cooling phase and the optimized
phase, consisting of tramp = 50 ms, the respective end temperatures are shown in Tab. 15.

Table 15 Minimum radial end temperatures for the current parameters and the optimized setting
of tramp = 50 ms (see Fig. 5.12), temperatures in mK.
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mode 30◦ 45◦ 60◦

Tend (tconst s = tramp = 25 ms) 0.42 0.50 0.73
Tend (tconst s = 0 ms, tramp = 50 ms) 0.40 0.48 0.69

∆Tend 0.02 0.02 0.04

The reduction in the final temperature is on the order of 5%. This indicates that a further
decrease of the end temperatures of the cooling phase without an increase of the total cooling
time tcool is not possible with the currently used linear ramp.
To investigate a possible further decrease of the mode temperatures, end temperatures are
calculated for long saturation ramp without a constant s cooling phase (tconst s = 0), assuming
Tini = Topt. The resulting temperatures, together with calculated theoretical limits Tlim(dashed
lines) for tramp →∞, are shown in Fig. 5.13. In Tab. 16, Tlim as well as calculated temperatures
for tramp = {50, 100, 200, 300, 800}ms are shown.

Figure 5.13 Radial end temperatures for long ramp times. Radial end temperatures of the
Doppler cooling phase are calculated assuming tconst s = 0.

As can be seen, the temperatures converge to the limit temperatures shown as dashed lines.
For a ramp time of tramp = 50 ms, the reached end temperatures are within ≈ 8 . . . 17% of
T lim. Doubling the ramp time to tramp = 100 ms results in a further decrease of the radial end
temperatures of ≈ 3 . . . 5%, while a 16-fold increase to tramp = 800 ms only yields a reduction of
≈ 8 . . . 12% (see Tab. 16). Note that the simulation assumes the absence of external sources of
heat.

Table 16 Radial end temperatures for long ramp times tramp and limit temperatures Tlim (see
Fig. 5.13), temperatures in mK.

mode 30◦ 45◦ 60◦

Tend (tramp = 50 ms) 0.40 0.48 0.69
Tend (tramp = 100 ms) 0.39 0.46 0.66
Tend (tramp = 200 ms) 0.38 0.45 0.64
Tend (tramp = 300 ms) 0.38 0.45 0.63
Tend (tramp = 800 ms) 0.37 0.44 0.61
Tlim (tramp →∞) 0.37 0.43 0.59
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Here it is mentioned that the temperature limit of the axial modes is calculated to be Tlim,ax =
0.65 mk. Using this, the mean limit temperature 〈T 〉lim over all three principal axis is calculated
to be

〈T 〉lim =
Tlim,ax + Tlim,θ=30◦ + Tlim,θ=60◦

3
≈ 0.54 mK, (5.96)

while in case of θ = 45◦ for both radial axes, 〈T 〉lim ≈ 0.5 mK. As expected from Doppler
cooling, the determined mean temperatures 〈T 〉lim are on the order of the ytterbium Doppler
limit TD,Yb ≈ 0.47 mK. It can be seen that mode temperatures Tα < TD,Yb along one principal
axis always result in Tα > TD,Yb for at least one other axis such that 〈T 〉lim ≥ TD,Yb holds.
At this point, a further increase of the cooling time does not seem sensible. Therefore, in the
next step, the cooling phase is optimized regarding the total cooling time tcool.

Figure 5.14 Radial end temperatures of the a Doppler cooling phase for different combinations
of tconst s and tramp. a), b), c) and d) show radial end temperatures of the Doppler cooling
phase assuming fixed constant s phases with tconst s = {15, 10, 5, 0}ms and varying ramped s
times tramp between 0 ms and 30 ms, assuming Tini = Topt. To find a compromise between low
end temperatures and short total cooling times tcool = tconst s + tramp, the end temperatures for
tcool = tramp = 50 ms (dotted lines) are used as benchmarks. The solid lines show the equilibrium
temperature of the constant s phase.

The goal of this optimization is to reach comparable end temperatures as for tcool = 50 ms
for a reduced total cooling time. Here the minimum temperatures obtained for a 50 ms ramp
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highlighted by dotted lines in Fig. 5.12 are used as benchmarks. For the optimization, radial end
temperatures are calculated for ramp times tramp between 0 . . . 30 ms and for different constant
s times tconst s assuming initial temperatures Tini = Topt and Tini = Tmelt (see figures 5.14 and
5.15) where again the total cooling time is tcool = tramp + tconst s. The solid lines at a ramp
time of 0 ms show the equilibrium temperatures Teq,const s of the constant s phase. At first, the
cooling phase is optimized for optimal initial temperatures Tini = Topt, leading to the most time
efficient cooling phase. Afterwards, an optimization is presented for the worst case Tini = Tmelt.
For optimal initial temperatures Tini = Topt, the radial mode temperatures of all projections θ
are already close to equilibrium after tconst s = 10 ms, as can be seen by comparison with the
solid lines in Fig. 5.14 a) and b) for tramp = 0. While for small ramp times tramp ≤ 15 ms the end
temperatures show significant differences depending on the constant s phase and hence tconst s,
for longer ramp times tramp ≥ 20 ms, the differences become negligible. This shows that for
long ramp times (and hence small ramp slopes a = t−1

ramp), the cooling coefficient c1 is still high
enough to enable fast cooling, while at the end, the scattering rate is sufficiently small to reach
low temperatures. Here the advantage of the saturation ramp becomes obvious. In the beginning
of the cooling phase, a high scattering rate is needed to quickly decrease the initial temperatures.
Since for long cooling ramps (tramp ≥ 25 ms) the decrease of the scattering rate is slow, the overall
temperature decrease in the beginning is comparable to the constant s phase. After a few ms
of cooling time, cooling with constant s is limited by the respective equilibrium temperature,
and the temperature decrease per unit time is decreased exponetially (since Ṫα(t) ∝ exp(−c1t)).
For the saturation ramp, the equilibrium temperature is a function of time. Therefore, the
scattering rate and the equilibrium temperature are continuously adjusted, leading to an almost
linear temperature decrease as can be seen in e.g. Fig. 5.8. In addition, it can be seen that
the benchmark temperatures for a cooling phase with tramp = 50 ms are already approximately
reached after a ramp time of tramp = 30 ms (see 5.14 d)). This verifies the observation in
Fig. 5.13, that towards the end of the ramp time, the temperature decrease is extremely slow
and time consuming. Therefore, in case of the combination θ = {30◦, 60◦}8 and for optimal initial
temperatures Topt, the cooling phase could be decreased to tcool = tramp = 30 ms (see Fig. 5.14
d)), or, to improve the robustness against high initial temperatures, to tcool = 35 ms with a 5 ms
constant s phase (Fig. 5.14 c)). In case of a trap axis orientation θ = 45◦ where the modes of
both radial axes are equal, the cooling phase could be further reduced by 10 ms. Here again
two options are proposed for the same reasoning, tcool = tramp = 20 ms and tcool = 25 ms with
a 5 ms constant s cooling time. To quantitatively compare these optimizations, the respective
end temperatures, benchmark temperatures and end temperatures of the currently used cooling
phase are shown in Tab. 17. The end temperatures of the proposed options for the trap axes
orientations θ = {30◦, 60◦} and for θ = 45◦ are highlighted by square brackets.

Table 17 Possible optimizations for tconst s and tramp, with respective radial end temperatures for
θ = {30◦, 60◦} and θ = 45◦ (see values in square brackets) assuming Tini = Topt, temperatures
in mK.

mode 30◦ 45◦ 60◦

Tend (tconst s = tramp = 25 ms) 0.42 0.50 0.73
Tend (tconst s = 0 ms, tramp = 50 ms) 0.40 0.48 0.69
Tend (tconst s = 5, tramp = 30 ms) [0.41] 0.49 [0.72]
Tend (tconst s = 0, tramp = 30 ms) [0.41] 0.49 [0.73]
Tend (tconst s = 5, tramp = 20 ms) 0.42 [0.51] 0.77
Tend (tconst s = 0, tramp = 20 ms) 0.42 [0.51] 0.80

For θ = {30◦, 60◦}, the total cooling time can be decreased by 30 . . . 40% while reducing the
8Remember that since both radial trap axes are orthogonal, an angle of θ = 30◦ for one trap axis results in

θ = 90◦ − 30◦ = 60◦ for the other axis, as can be seen in Fig. 5.1.
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end temperatures by ≈ 1% compared to the cooling phase used in the spring clock campaign
(tconst s = tramp = 25 ms). Compared to the benchmark temperatures for tcool = tramp = 50 ms,
reducing the cooling time results in 2 . . . 5% higher end temperatures. For θ = 45◦ the cooling
time could be further reduced to 40 . . . 50% while the corresponding end temperature increase
is ≈ 2% relative to the cooling phase in the clock sequence or ≈ 7% relative to the 50 ms
ramp. Since the temperature differences between the proposed options with and without a 5 ms
constant s phase are on the order of µK, it could be neglected for optimal initial Temperatures
Tini = Topt.
For the worst case initial temperatures Tini = Tmelt, the situation is different. As can be seen in
Fig. 5.15, the higher initial temperatures result in the need of longer cooling times at constant
saturation.

Figure 5.15 Radial end temperatures of the Doppler cooling phase for different combinations
of tconst s and tramp and for worst case initial conditions Tini = Tmelt. a), b), c) and d) show
radial end temperatures of the Doppler cooling phase assuming fixed constant s phases with
tconst s = {20, 15, 5, 0}ms and varying ramped s times tramp between 0 ms and 30 ms.

Here tconst s = 15 ms is necessary to get close to equilibrium for all radial modes (see Fig. 5.15
b), solid lines at 0 ms ramp time). While the temperatures for Tini = Topt and for long ramp
times tramp ≤ 20 ms show just a small dependence on the length of the constant s phase, for
Tini = Tmelt the calculated end temperatures differ significantly depending on tconst s, especially
for the worst cooled modes at θ = 60◦ (compare Fig. 5.15 b) and d)). This shows the importance
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of the constant s phase when a broad range of initial temperatures needs to be covered. To keep
comparable end temperatures as for the options given in Tab. 17, for θ = {30◦, 60◦}, a cooling
phase with a constant s phase of tconst s = 5 ms and a ramp time of tramp = 30 ms is proposed.
For θ = 45◦, the dependence of the end temperatures on the length of the constant s is negligible
for ramp times tramp ≥ 25 ms (see Fig. 5.15 d)). Therefore, for this trap axes configuration, a
cooling phase tcool = tramp = 25 ms is a good compromise between the reduction of the total
cooling time and reaching low end temperatures. The respective end temperatures are shown in
Tab. 18.

Table 18 Possible optima (square brackets) for tconst s and tramp with respective radial end
temperatures for θ = {30◦, 60◦} and θ = 45◦ assuming Tini = Tmelt, temperatures in mK.

mode 30◦ 45◦ 60◦

Tend (tconst s = tramp = 25 ms) 0.42 0.50 0.73
Tend (tconst s = 0 ms, tramp = 50 ms) 0.40 0.48 0.69
Tend (tconst s = 5 tramp = 30 ms) [0.41] 0.49 [0.75]
Tend (tconst s = 0 tramp = 25 ms) 0.42 [0.51] 0.98

For the worst case initial temperatures Tini = Tmelt, the cooling phase for θ = {30◦, 60◦} could
be reduced by 30% while obtaining comparable temperatures as for tconst s = tramp = 25 ms
(within ≈ 3% deviation). For θ = 45◦ a reduction of 50% is possible while the temperature
increase is ≈ 2%. Compared to the benchmark temperatures for tcool = tramp = 50 ms, the
proposed optimizations yield an end temperature increase between 3 . . . 9% for θ = {30◦, 60◦}
and ≈ 6% for θ = 45◦. Here it becomes clear that a reduction of the cooling time also results in
a decreased robustness against high initial temperatures. Regarding the fact that the assumed
initial temperatures Tini = Tmelt describe the worst case scenario, accepting a possible maximum
end temperature increase of ≈ 10% while decreasing the total cooling time by 40% might be a
considerable trade-off.
After the cooling phase was optimized for the currently used linear saturation ramp, in the
next subsection, the temperature analysis of the cooling phase is carried out under use of an
exponential ramp.

5.3.3 Analysis of an exponential saturation ramp

For the analysis, the linear ramp function in Eq. 5.92 is replaced with an exponential function
of the form

exp(t) = e−aexpt, (5.97)

where aexp is an additional parameter in the model. For the linear ramp, the slope a = tramp

is determined by the ramp time tramp. The parameter aexp now allows to shape the saturation
ramp for fixed tramp. Here the idea is to investigate whether a faster decrease of the saturation in
the beginning of the cooling phase, and hence a faster decrease of the equilibrium temperatures
could be advantageous compared to the above analyzed linear saturation decrease. To illustrate
the cooling dynamics of an exponential compared to a linear ramp function independent of a
constant s phase, end temperatures for tramp = 250 ms are calculated, assuming Tini = Topt.
Since there is now an additional free parameter aexp, the end temperatures are calculated for
different 1/e times texp = a−1

exp. Fig. 5.16 shows the resulting temperatures, together with
the theoretical limits Tlim for tramp → ∞ and the corresponding end temperatures of a linear
saturation ramp with tramp = 250 ms.
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Figure 5.16 Radial end temperatures for an exponential saturation ramp. Radial end tempera-
tures for a fixed ramp time of tramp = 250 ms are calculated for varying 1/e times texp = a−1

exp.
End temperatures for a linear saturation ramp for tramp = 250 ms are plotted as solid lines. The
end temperature limits Tlim for tramp →∞ are shown as dashed lines for comparison. For the ex-
ponential ramp and for each θ, a minimum can be observed for 1/e times around texp,opt ≈ 45 ms
(see Tab. 19).

For all angles θ and for 1/e times texp between 20− 80 ms, the calculated end temperatures
for the exponential ramp are lower than the corresponding temperatures of a linear ramp. In
addition, an optimal 1/e time can be found for every θ where the calculated end temperatures
reach a minimum. This can be explained by investigating the limits of the exponential for
texp → 0 and texp → ∞. For texp → 0, the exponential ramp becomes constant such that the
final temperatures are limited by the equilibrium temperatures for the high s phase teq,const s

(see e.g. Tab. 11). For texp → ∞, the exponential becomes a step function which results in an
instantaneous drop of the 370 nm saturation to 0 and hence a stop of the cooling dynamic. In
between, as shown in Fig. 5.16, there is an optimum texp,opt for which the end temperatures are
minimized. This optimum is increasing for increasing angles θ. Smaller 1/e times lead to a faster
decrease of the equilibrium temperature. The extent to which the radial mode temperatures are
able to follow the decreasing equilibrium depends on the cooling coefficient c1 which depends
on θ via the projection krad,V ∝ cos(θ) (Eqs. 5.24 and 5.40). Hence, small angles θ result in
small times texp,opt. For a quantitative analysis, the minimum end temperatures for the optimal
1/e times texp,opt ≈ 45 ms, limit temperatures Tlim and end temperatures for a linear ramp with
tramp = 250 ms are shown in Tab. 19.

Table 19 Minimum radial end temperatures for an exponential (texp,opt ≈ 45 ms) and a linear
saturation ramp of length tramp = 250 ms as well as limit temperatures (see Fig. 5.16), temper-
atures in mK.

mode 30◦ 45◦ 60◦

Tlim (tramp →∞) 0.37 0.43 0.59
Tend (tramp = 250 ms) 0.38 0.45 0.63
Tend (texp,opt ≈ 45 ms) 0.37 0.43 0.61

As can be seen, the resulting minimum end temperatures for θ = {30◦, 45◦, 60◦} (at texp,opt ≈
45 ms for the exponential ramp are close to the limit temperature Tlim. The temperature differ-
ences are on the order of ≈ 1%. On the other hand, the end temperatures using the exponential
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ramp are about 5% smaller compared to the linear ramp. This shows that when texp is properly
chosen, the exponential ramp can further decrease the end temperatures for a fixed cooling time.
As a next step, the exponential ramp is investigated using total cooling times tcool = tconst s +
tramp = 35 ms as proposed for θ = {30◦, 60◦} in the previous optimization of cooling phase. Here
the end temperatures are again calculated for Tini = Topt and for different constant s times (see
Fig. 5.17). The end temperatures Tend,ref of the optimized cooling phase (tconst s = 5 ms and
tramp = 30 ms) under use of a linear ramp serve as reference (shown as solid lines). In addition,
the temperature limits Tlim are again plotted as dashed lines.

Figure 5.17 Radial end temperatures of cooling phase for tcool = 35 ms under use of an ex-
ponential ramp assuming Tini = Topt. End temperatures for cooling phases with combina-
tions tconst s = 5 ms and tramp = 30 ms (a), tconst s = 10 ms and tramp = 25 ms (b) as well as
tconst s = 15 ms and tramp = 20 ms (c) are calculated for varying 1/e times texp. For each com-
bination, the x-axis is adjusted to show the minimal end temperatures. Solid lines show the
reference temperatures Tend,ref , dashed lines the limit temperatures Tlim.

For optimal initial temperatures, the use of an exponential ramp results in an overall end
temperature decrease compared to the cooling phase under use of a linear ramp. Just for the
shortest ramp time tramp = 20 ms in Fig. 5.17 c), a temperature increase can be observed for
the worst cooled radial modes with θ = 60◦. In general, the same trend of decreasing end
temperatures for increasing ramp time tramp can be observed as it was the case for the linear
ramp. This shows that although the saturation decrease in the beginning of the ramped s phase
is steeper for the exponential ramp, the corresponding scattering rate is still large enough to
yield a fast temperature decrease in the beginning of the ramped s phase. Here the exponential
ramp gains from the resulting lower equilibrium temperatures, which counteract the smaller
cooling coefficient c1. The lowest temperatures are reached for a cooling phase with constant
s phase of tconst s = 5 ms, a ramp time of tramp = 30 ms (same as for the linear ramp) and for
texp,opt ≈ 10 ms. Again, the optimal 1/e time shows slight differences for the three angles θ.
When the modes of the radial axes are not equally cooled, as it is the case for θ 6= 45◦, it is
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necessary to find a compromise for the end temperatures of both radial axes. The resulting
minimum temperatures for texp,opt ≈ 10 ms are shown in Tab. 20.

Table 20 Minimum radial end temperatures obtained for a fixed cooling time tcool = 35 ms, an
exponential saturation ramp and for Tini = Topt, temperatures in mK.

mode 30◦ 45◦ 60◦

Tlim (tramp →∞) 0.37 0.43 0.59
Tend,ref (tconst s = 5 ms, tramp = 30 ms) 0.41 0.49 0.72

Tend (tconst s = 5 ms, tramp = 30 ms, texp,opt ≈ 10 ms) 0.40 0.47 0.70

As can be seen, the use of an exponential ramp results in a further decrease of the end temper-
atures Tend by ≈ 4% compared to the same cooling phase under use of a linear ramp (Tend,ref).
The temperature difference to the temperature limits Tlim are on the order of 8% for the best
cooled radial modes at θ = 30◦ and ≈ 16% for the worst cooled modes at θ = 60◦.
Lastly, the robustness against high initial temperatures is analyzed. For the analysis, the end
temperatures are again calculated, but now under the assumption of Tini = Tmelt (Fig. 5.18).

Figure 5.18 Radial end temperatures of the cooling phase for tcool = 35 ms under use of an
exponential ramp assuming Tini = Tmelt.

Again, the lowest temperatures are obtained for θ = {30◦, 45◦} using a cooling phase with
tconst s = 5 ms and tramp = 30 ms (see Fig. 5.18 a)). The situation is different for the worst
cooled modes at θ = 60◦. Here the constant s phase is not long enough to sufficiently reduce
the higher initial temperatures before the exponential ramp starts. Due to the resulting higher
temperatures present at the beginning of the ramped s phase, the faster decrease of the cooling
coefficient c1 is disadvantageous. To reach comparable end temperatures as for the linear ramp,
it is necessary to increase the constant s phase to tconst s = 10 ms (see Fig. 5.18 b)). On the
other hand, a further increase to tconst s = 15 ms, as shown in Fig. 5.18 c) again results in an
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increase of the end temperatures. For every total cooling time tcool, there exists an optimal ratio
between tconst s and tramp. In case of the used tcool = 35 ms, two cooling phases are proposed.
The first uses a short constant s phase of tconst s = 5 ms and ramp phase of tramp = 30 ms with
texp,opt ≈ 10 ms, which results in lower temperatures for optimal initial temperatures, but a
decreased robustness against Tini = Tmelt (compare figures 5.17 a) and 5.18 a)). The second
combination yields an improved robustness due to a longer constant s phase of tconst s = 10 ms
but higher end temperatures for optimal initial temperatures due do a shorter ramp phase with
tramp = 25 ms and texp,opt ≈ 9 ms. The end temperatures of the proposed cooling phases for
Tini = Tmelt are shown in Tab. 21.

Table 21 Radial end temperatures for two proposed optimized cooling phases under use of an
exponential ramp and assuming Tini = Tmelt, temperatures in mK.

mode 30◦ 45◦ 60◦

Tlim (tramp →∞) 0.37 0.43 0.59
Tend,ref (tconst s = 5 ms, tramp = 30 ms) 0.41 0.49 0.75

Tend (tconst s = 5 ms, tramp = 30 ms, texp,opt ≈ 10 ms) 0.40 0.47 0.79
Tend (tconst s = 10 ms, tramp = 25 ms, texp,opt ≈ 9 ms) 0.40 0.48 0.76

Both proposed options lead to lower temperatures for θ = {30◦, 45◦} compared to the cooling
phase under use of a linear ramp and therefore a good robustness against high initial temper-
atures. The end temperatures are increased for θ = 60◦. This shows that modes with small θ,
and hence with a large cooling coefficient c1 rather gain from an exponential ramp than worse
cooled modes (such as for θ = 60◦). This also indicates that an equal projection of θ = 45◦ of
the cooling beam V onto both radial trap axes’ modes is a sensible choice in combination with
an exponential ramp.

5.3.4 Summary

This section presented possible optimizations of the phases in clock sequence branch 1 (see
Fig. 3.3). Based on the results of the previous temperature analysis in 5.2, the indium detection
phase as well as the Doppler cooling phase were further investigated. For the indium detection
phase it was shown that the currently used saturation coefficients sV = 0.5 and sH1 ≈ 0.3sV

of the ytterbium Doppler cooling beams V and H1 are too small to compensate the radial
heating rate due to the 230 nm fluorescence on the indium detection transition. An optimal
value of sV ≈ 0.8 . . . 0.9 depending on the trap axes orientation θ was found, for which the
end temperatures of the indium detection phase could be reduced by 4 . . . 8%. Due to the
experimentally observed drop of the 230 nm fluorescence for sV � 0.5, further experiments are
planned to investigate whether sV can be further increased to ≈ 0.9.
Regarding the Doppler cooling phase, it was shown that for a fixed cooling time of tcool = 50 ms,
the constant s phase can be completely neglected. The lowest temperatures are reached for
tcool = tramp = 50 ms, while keeping the cooling phase robust against high initial temperatures
Tini = Tmelt. The optimization yields an improvement of the end temperatures of ≈ 4% relative
to the currently used tconst s = tramp = 25 ms. The analysis has also shown that a further
decrease of the end temperatures on the order 10% is only possible for cooling times � 100 ms.
Next, the cooling phase was optimized regarding the total cooling time. For axes orientations
θ = {30◦, 60◦}, tcool could be reduced by ≈ 30 . . . 40% while obtaining comparable radial end
temperatures as for the Doppler cooling phase used in the clock campaign. In case of a trap axis
θ = 60◦, it is necessary to keep a short constant s phase of tconst s = 5 ms to cover a sufficient
range of initial temperatures. For equal projections on both trap axes, θ = 45◦, the cooling
phase could be reduced even further to tcool = tramp = 25 ms.
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The analysis of the exponential ramp has shown that the use of an exponential instead of a
linear ramp could reduce the end temperatures further by ≈ 4% for the proposed total cooling
time of tcool = 35 ms. Here the 1/e time texp introduces a new parameter in the optimization.
While these optimum 1/e times texp,opt are approximately the same for all investigated axis
orientations θ in case of optimal initial temperatures, it is not possible to find a shared optimum
for all angles in case of Tini = Tmelt. Here a compromise needs to be found between the two
orientations θ = {30◦, 60◦}. This trade-off can be avoided by using equal projections on both
radial trap axes (i.e. θ = 45◦). For this orientation, the exponential saturation ramp leads
to lower radial end temperatures compared to a linear ramp independent of the chosen initial
temperatures.
In summary, the chapter has shown that the currently reached end temperatures are already
close to the limit temperatures Tlim for tcool →∞. Therefore, the largest potential for possible
optimizations is rather given by a reduction of the total Doppler cooling time, than a further
reduction of the end temperatures.
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6 Summary and outlook

In spring 2022, the 115In+ clock at PTB attended an international clock campaign [16] for the
first time. Its contribution to the campaign resulted in various new frequency ratios and an
improvement of the only previously reported optical frequency ratio value 87Sr/115In+ [17]. For
the uncertainty evaluation of these ratios, frequency shifts need to be thoroughly analyzed. This
work presented the evaluation of the probe field induced ac-Stark of the indium clock, as well
as a temperature analysis of the clock ion temperature throughout the spectroscopic sequence
based on a theoretical model for sympathetic normal mode cooling.

The probe field induced ac-Stark shift results from the interaction of the probe field with the
electric dipole operator. There are two contributions to the shift, the ellipticity induced shift as
presented by Yudin et al. [18] and the ac-Stark shift by far off-resonant transitions.
The ellipticity induced shift is a yet unconsidered contribution in clocks based on the highly
forbidden 1S0 → 3P0 transition. It originates from experimental imperfections, namely an un-
wanted ellipticity of the probe field and a misorientation of the bias magnetic field described
by the angular parameters ε and ξ. The analysis of the literature has shown that under typ-
ical conditions in atomic clock experiments, experimental imperfections can be estimated by
|εξ|est≈ 2 × 10−3. Using this, a first estimate of the order of magnitude of the shift was deter-
mined for different clock species. The resulting shifts are in the low to mid 10−21 region and
it was shown that 115In+ is a favorable species, since it features an intrinsically low shift sensi-
tivity. A further analysis of the experimental imperfections ε and ξ in the indium clock setup
at PTB, which was based on clock spectroscopy of all relevant transitions, resulted in an upper
bound of |εξ|max≤ (2.7±1.9)×10−4. Using the results of the evaluated line scans, the ellipticity
induced shift for the 115In+ clock could be evaluated at a fractional value of (0 ± 4) × 10−22.
The evaluation of the transition scans showed the possibility that under the assumption of worst
case frequency drifts, two relevant transitions could be shifted out of the covered scanning range
throughout the process of acquiring the scans. The experiment could not be repeated through-
out this thesis and a repetition is planned in the near future to verify the presented results.
The ac-Stark shift by far off-resonant transitions was evaluated in a theoretical analysis. Here
the probe electric field strength was determined from the clock transition Rabi frequency present
during clock interrogation and the respective dipole matrix element. A further analysis of var-
ious dipole matrix elements of far off-resonant transitions in 115In+ allowed to determine the
shift at a value of (−2±5)×10−22. Using both contributions, the total probe field induced shift
was determined to be (−2± 6)× 10−22.
The analysis has shown that the probe field induced ac-Stark shift is a minor contribution to
the total uncertainty of the indium clock. The written scripts for the evaluation of both contri-
butions also allows an easy evaluation of the shift in future clock operation.

A major contribution to the uncertainty of the 115In+ clock originates from the thermal time
dilation shift which results from the residual thermal motion of the clock ion in the trapping
potential. The motion also affects the instability of the clock via the temperature dependent loss
of contrast and hence a reduction of the signal to noise ratio. To reduce the thermal influence
on the clock performance, the 115In+ ions are trapped in a linear mixed species Coulomb crystal
together with 172Yb+ which serve as the cooling species. Due to the coupled motion resulting
from the Coulomb interaction, Doppler cooling of the ytterbium ions sympathetically cools the
indium ions.
To gain a deeper understanding of the temperature dynamics throughout the whole spectroscopy
sequence, a model for sympathetic mode cooling described by Keller et al. [21] was extended
to fit the experimental conditions during the spring 2022 clock campaign. Using the model, the
spectroscopy sequence and especially the Doppler cooling phase were extensively analyzed using
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scripts written in Python. Without external disturbances such as collisions with background
gas particles, the model predicts mode temperatures of all three principal trap axes ≤ 2.5 mK
throughout the whole sequence and < 0.8 mK during the clock interrogation. It also provides
a lower bound of ≈ 0.7 mK for the temperature of the axial motion which could yet not be
determined directly experimentally. Even the inclusion of cooling laser intensity and frequency
fluctuations did not result in a temperature increase > 5% for all considered modes. The anal-
ysis also showed that the indium and ytterbium detection phases, which are necessary for state
preparation and readout, contribute considerably to cooling and the robustness of the sequence
against external heating sources. An interesting observation could be made for the radial and
axial mode temperatures during the indium detection. The fluorescence of the indium ion re-
sulted in axial mode temperatures � TD,Yb ≈ 0.47 mK, while the radial modes were heated to
≈ 5TD,Yb. Although the used model can not fully describe the cooling dynamics resulting from
the narrow indium detection transition, by analyzing experimentally observed scattering rates,
it was shown that axial temperatures on the order of 100µK are plausible.
Possible improvements of the clock sequence were identified. The indium detection phase was
optimized to reduce the effect of radial heating due to the indium fluorescence. Here opti-
mal saturation parameters sV = 0.8 . . . 0.9 and sH1 = 0.3sV of the ytterbium Doppler cooling
beams V and H1 were found which minimize the radial mode temperatures during the detection.
Whether these parameters can be applied in the experiment needs experimental verification. It
was observed that the indium fluorescence drops for large cooling beam saturation parameters.
This could be explained by a transition between indium and ytterbium cooling dominated axial
temperature regimes. To verify this hypothesis, further experimental investigation is necessary.
A first comparison with experimental data showed overall good agreement with the theoretically
determined radial temperatures. To completely verify the results, additional experiments are
planned.
Next, the Doppler cooling phase was optimized, which consists of two equally long sub-phases,
one at constant cooling laser saturation followed by a phase where the saturation is linearly
ramped to 0. It was shown that the currently reached radial and axial mode temperatures are
within 8 . . . 17% of their respective theoretical temperature limits. A further temperature reduc-
tion would make total cooling times � 100 ms necessary which are not sensible regarding the
resulting decreased duty cycle. While keeping the currently used 50 ms total Doppler cooling
time, the end temperatures could be decreased by ≈ 5% by removing the constant s phase in
favor of a longer saturation ramp.
To improve on duty cycle, the cooling phase was optimized regarding a decrease of the total cool-
ing time. Here a reduction of 30 . . . 40% was possible by shifting cooling time from the constant
s to the ramped s phase. The presented optimizations reached comparable end temperatures as
for the currently used cooling settings while keeping the sequence robust against a broad range
of initial temperatures. It was also shown that an equal projection of the vertical cooling beam
V onto the two radial trap axes (instead of the currently assumed 30◦/60◦) results in the best
compromise between the respective end temperatures.
Also, the influence of a different ramp function was investigated. The linear ramp was compared
to an exponential which introduced the corresponding 1/e time as new parameter in the opti-
mization. It was shown that the exponential ramp can further reduce the end temperature of
the Doppler cooling phase by ≈ 4% compared to the proposed optimized phase under use of a
linear ramp. On the other hand, the exponential ramp decreased the robustness against higher
initial temperatures in case of unequal V projections onto the radial axes. The robustness could
be increased by using equal projections. This, in combination with an exponential saturation
ramp, could be a reasonable choice for future clock operation.
Overall, the theoretical temperature analysis allows a better understanding of the ion temper-
ature dynamics throughout the clock spectroscopy sequence. The extension of the model for
sympathetic mode cooling, its application to the experimental conditions during the spring 2022
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clock campaign as well as its implementation in Python allows to easily simulate the impact of
possible changes in the spectroscopy sequence. The presented optimizations should therefore be
seen as the starting point for the theoretical analysis of future cooling routines.
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