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Abstract

Quantum field theory successfully unified the weak interaction, the strong interaction,
and the electromagnetic field. However, the unification of quantum field theory and
the gravitational field has so far been challenging. Therefore, attempts on the modifi-
cation of the General Theory of Relativity have been made. Since the outcomes of the
theory are derived from the basic principles, it is worthwhile to investigate the basis of
gravitational physics. One of the basic assumptions is the Local Lorentz Invariance.

Within the framework of the Standard Model Extension, the breaking of Lorentz
symmetry is inevitable. It suggests to measure a possible Lorentz violation signal in
different particle sectors. In the electron sector, this signal is expected to be accessible
at a small energy scale, as provided by atomic transitions in quantum optics experi-
ments. Experimental tests on Lorentz symmetry in the electron sector have already
been carried out with neutral Dy atoms, Ca+ ions, and Yb+ ions. The latter hosts

the current record in the upper bound limit of the Lorentz violation parameter ∆C
(2)
0

provided by the theory being 8.1× 10−21.

The main goal of our work is to test the validity of Lorentz symmetry and set a
new upper bound via the approach of trapping multiple 172Yb+ ions in a linear radio-
frequency Paul trap. This thesis gives the theoretical background of the Lorentz viola-
tion in the electron sector and discusses four different schemes to measure the signal.
The first three schemes are based on producing decoherence-free states via quantum
correlation and the latter performs the experiment via dynamical decoupling. A laser
with 12 mW of optical power at the ion has been set up for the interrogation of the
octupole transition near 467 nm. It is used to excite the ions to the 2F7/2 manifold
which has a lifetime of ≈ 6 years. The alignment of the laser has been done via moni-
toring the induced AC-Stark shift of it on the quadrupole transition at 411 nm. With
the selected laser beam parameters for the first attempt to interrogate this transition,
a π-pulse time of ≈ 54 ms is to be expected.

With the sensitivity to a possible signal ∆C
(2)
0 via dynamical decoupling being com-

parable with quantum correlation and not needing to worry about state decoherence
during the state transfer which makes it easier to operate, we decided to follow the
approach of implementing dynamical decoupling on the 2F7/2 manifold. The measure-

ment of ∆C
(2)
0 = 8.1×10−21 took an averaging time of 120 h. With the same averaging

time, 10 ions, and 10 s of interrogation time, we would be able to reach a sensitivity



of ∆C
(2)
0 = 4.7 × 10−22 which would be a factor of 17 better than the current upper

bound limit of ∆C
(2)
0 . With 2 ions and 1 s of interrogation time, we would be able to

reach a sensitivity that is compatible to 8.1× 10−21 within 24 h of averaging time.

Keywords: Lorentz violation, radio-frequency Paul trap, octupole transition,
dynamical decoupling

iv







Contents

1. Introduction 1

2. Discussion on the Lorentz violation theory and detection schemes 5
2.1. The theoretical background for the Lorentz violation in the electron sector 6

2.2. State transformation relations . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3. Scheme 1: Preparing a product state which dephases into a mixed state 10

2.4. Scheme 2: Direct mapping of the ions onto the 2F7/2 state via two-
frequency bichromatic laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. Scheme 3: Using a Mølmer Sørensen gate to produce fully entangled state 17

2.6. Scheme 4: Using dynamical decoupling to produce a mixture of Zeeman
substates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7. Sensitivity estimations and comparison of scheme 1-4 . . . . . . . . . . . 23

3. Experimental setup 27
3.1. The octupole laser for the 171Yb+ single-ion optical clock . . . . . . . . . 27

3.2. 934nm breadboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1. Slave diode lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2. High frequency AOM . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3. Sealed slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. 467nm SHG breadboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Octupole transition of a single 172Yb+ ion 41
4.1. Octupole selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Experimental parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1. Beam waist and pulse time . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2. Beam alignment procedure . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3. Pulse sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. Summary and outlook 53

Appendix A. Mathematica Code 61
A.1. Calculation of Rabi frequency and π-pulse time . . . . . . . . . . . . . . . 61

A.2. Calculation of the AC-Stark shift and relative shift due to intensity
fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii





1. Introduction

The theory of General Relativity is one of the most successful theories of the last cen-
tury and is an important cornerstone of modern physics. However, the unification of
the four forces (the weak interaction, the strong interaction, the electromagnetic field,
the gravitational field) has not been successful. In order to unify them, there has been
suggestions that modifications of gravitational physics are needed. It is worthwhile to
investigate the basis of gravitational physics and one of the fundamental symmetries
of the General Theory of Relativity is the Lorentz symmetry [1] (LS). It is one of the
three pillars of the Einstein’s Equivalence Principle (see Fig. 1.1) and suggests that
the laws of physics stay the same for all observers that are moving with respect to one
another within an inertial frame.

Well-known tests of this important cornerstone of modern physics are Michelson-
Morley-type experiments verifying the isotropy of the speed of light [2–4]. For testing
matters, Hughes-Drever-type experiments [5–10] test whether the kinetic energy of
particles is independent of the direction of their velocity, i.e. whether their dispersion
relations are isotropic. To provide more guidance for physics beyond the standard
model, there have been theoretical suggestions that LS may not be exactly invari-
ant at experimentally inaccessible energy scales. The possibilities of four-dimensional
Lorentz violation (LV) has been investigated though not conclusively in various quan-
tum gravity models such as string theory [11, 12], and loop quantum gravity [13].

LV may be possible in different systems, making it essential to verify with different
particles at high precision. Tests have been conducted for photons [2, 14], protons
[15], neutrons [10, 16], electrons [7, 17, 18], muons [19], and neutrinos [20, 21]. The
summary of all limits before the year 2011 are given in Ref. [22]. While the natural
energy scale for strong LV induced by quantum gravity is the Planck scale (at GeV
level), the consequences of Lorentz violating physics may also lead to a very small but
potentially observable low-energy (at eV level) LV signal. According to the Standard
Model Extension [22–24] (SME), the measurement of the LV signal can be conducted
in different sectors and one of them is the electron sector. Right now, the most sensi-
tive LV tests in the electron sector are conducted with neutral Dy atoms [7], Ca+ ions
[18], and Yb+ ions [25] with the latter hosting the current record of the upper bound

limit of the LV parameter ∆C
(2)
0 provided by the theory being 8.1×10−21 within 120 h
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1. Introduction

Figure 1.1.: The basic assumptions of the Einstein’s equivalence principle.

of averaging time.

This thesis is organized as follows:

• In chapter 2 the theoretical background for LV in the electron sector is discussed.
Four schemes for the detection of a possible LV signal with 172Yb+ are presented.
Scheme 1 to 3 are based on quantum correlation which allows the states of the ions
to become insensitive to external magnetic field fluctuation. Scheme 4 implements
dynamical decoupling on the 2F7/2 manifold such that the Zeeman substates are
mixed and the states of the ions are insensitive to the magnetic field during the
accumulation of a possible LV phase signal. To its end, the sensitivities of the
schemes are calculated and compared with each other. This chapter concludes
with the most favored method.

• In chapter 3 the preparation for the 467 nm octupole laser light is presented.
The setup consists of two main breadboards. The first part is the 934 nm laser
breadboard which has two purposes: to enhance the fractional amount of the
optical power that is shared with an optical clock experiment that uses 171Yb+,
and to bridge the frequency gap between the two Yb+ isotopes. The second part
is the 467 nm laser breadboard which is used to obtain the 467 nm laser light for

2



the interrogation of the octupole transition.

• In chapter 4 the octupole selection rules and the experimental parameters for
the interrogation of the octupole transition are discussed. The pulse sequence for
the interrogation is presented.

• In chapter 5 the conclusion with a proposal for implementing dynamical de-
coupling on the 2F7/2 manifold of 172Yb+ for the test of LV in made. Then the
outlook on the next steps to be taken in the experiment is given.

3





2. Discussion on the Lorentz violation theory
and detection schemes

In this chapter, the theoretical background for the LV in the electron sector is first
presented. The state transformation relations and four different schemes for detecting
the LV signal are discussed.

The state we use to perform a test of LV is the F manifold in the even isotope 172Yb+.
During the accumulation of this possible LV signal, the state needs to be protected
from the magnetic field noise. In order to suppress the noise in the first order, one of
the ways is to prepare the ions in an entangled state with the average of the linear
Zeeman shift being zero via quantum correlation and thus insensitive to the magnetic
field noise. However, the scaling of the numbers of ions with quantum correlation is
limited and hard to obtain. A promising technique to implement dynamical decoupling
in the 2F7/2 manifold. With this method, less optical pulses are needed, no AC-Stark
shift will be present due to radio-frequency (RF) operations, and measurements can
be done with multiple ions.

The π-pulse time for this highly forbidden transition is at the level of tens of mil-
liseconds. During this time, the magnetic field noise may couple into the state and
cause dephasing because this isotope does not have a magnetic field noise insensitive
transition. Therefore, the magnetic field needs to be actively stabilized.

After the discussion of the four schemes, their sensitivities to a possible LV signal
are calculated and compared.

The schemes will be discussed in the following order:

• Scheme 1 [17]: preparing a superposition state with two ions that dephases into
a mixed state which contains the desired decoherence-free entangled state with
50% probability [17]. Then the desired state is mapped onto the 2F7/2 state for
a possible LV signal accumulation.

• Scheme 2: implementing a two-frequency bichromatic laser to prepare a super-
position state similar to scheme 1 that dephases into a mixed state. The desired

5



2. Discussion on the Lorentz violation theory and detection schemes

state for a possible LV signal detection is populated with 50% probability.

• Scheme 3 [18]: implementing a Mølmer Sørensen gate [26–28] to entangle the
two ions to obtain the desired state with 100% probability [18] for a possible LV
signal detection.

• Scheme 4: implementing dynamical decoupling on the 2F7/2 manifold. It is a
robust method which can easily scaled up to higher ion numbers. It also reduces
the number of required optical pulses which suppresses the effect of laser induced
AC-Stark shift. A composite RF-pulse is implemented for the accumulation of a
possible LV signal.

2.1. The theoretical background for the Lorentz violation in the
electron sector

The LV is typically studied in the framework of the SME. It can be used to describe
the low-energy limit that predicts LV, and also includes the standard model as a limit-
ing case. It provides a universal platform to compare all kinds of LV measurements [24].

In the electron sector, a hypothetical LV is quantified in the SME by adding a
symmetry-breaking c′µν tensor to the kinetic term in the standard model Lagrangian.
In the context of clock experiments, the LV in bound electronic states leads to a small
shift of the energy level described by a Hamiltonian [7, 29]

δĤ = −
(
C

(0)
0 −

2U

3c20
c′00

)
p2

2
− C(2)

0

T̂
(2)
0

6me

, (2.1)

where p is the momentum of a bound electron, U is the Newtonian potential and

c0 is the speed of light. The parameter C
(0)
0 , C

(2)
0 = cxx + cyy − 2czz, and c′00 are

elements of the c′µν tensor that characterizes the LV. The T̂ 2
0 is the corresponding com-

ponent of the quadruple moment operator of the electronic momentum distribution.

The non-relativistic form of the T̂
(2)
0 operator is T̂

(2)
0 = p2 − 3p2z, where pz is the

component of the momentum along the quantization axis, and the relativistic form is

T̂
(2)
0 = cγ0(γp − 3γzpz), where γ0, γ

z and γ are the Dirac matrices. The first part of
Equ. 2.1 is a constant for the certain type of elements chosen, and the second part is

the part we are interested in. The parameter C
(2)
0 will vary if the LS is violated. If the

Lorentz symmetry is invariant, the tensor becomes zero.

There are two different approaches to measure the cause of a possible LV to the
energy levels:
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2.1. The theoretical background for the Lorentz violation in the electron sector

1. Measure the absolute frequencies of an optical transition with differently oriented
quantization axis, then compare the frequency difference between them.

2. Using two Zeeman substates that have differently oriented wave packets and
measure the energy level difference between them.

The first approach was implemented in the experiment of Ref. [25] where two 171Yb+

single-ion optical clocks operating on the 2S1/2 ↔ 2F7/2 electric octupole transition with
quantization axes aligned along nonparallel directions were used and the frequencies
of them were compared continuously. According to SME, the signal of a possible LV
would manifest itself as the quantization axis rotate. In the Earth frame, it would be
a sidereal modulation of the frequency offset. From the absence of such modulation of
the frequency difference at the 10−19 level, the stringent limits on LV parameters for
electrons are pushed to the range of 10−21.

The approach we follow is the second one. With the second approach we are more
sensitive to a possible LV signal as will be discussed in Section 2.7. The calculation of
the energy shift due to possible LV can be reduced to the calculation of the expectation
value of the Hamiltonian in Equ. 2.1. The matrix element of the expectation value

〈J ,mj|T̂ (2)
0 |J ,mj〉 is expressed through the reduced matrix element of the T̂

(2)
0 operator

using the Wigner-Eckart theorem, becoming [7, 29]

〈J ,mj|T̂ (2)
0 |J ,mj〉 = (−1)J−mj

 J 2 J

−mj 0 mj

 〈J ||T̂ (2)||J〉, (2.2)

where 〈J ||T̂ (2)||J〉 is the reduced matrix element. By using the algebraic expression
for the 3j-symbol, we arrive at

〈J ,mj|T̂ (2)
0 |J ,mj〉 =

−J(J + 1) + 3m2
j√

(2J + 3)(J + 1)(2J + 1)J(2J − 1)
〈J ||T̂ (2)||J〉. (2.3)

where J is the quantum numbers of the total angular momentum and mj is the pro-
jection onto the quantization axis. From the equation we see that the tensor of the
Lorentz violating signal is proportional to m2

j . Therefore, the idea to obtain a possible
LV signal is to monitor the energy difference between different mj substates as the

quantization axis rotates, and thus placing a bound to C
(2)
0 . As depicted in Fig. 2.1, a

magnetic bias field ~B is applied vertically in the laboratory frame to define the quan-
tization axis of the experiment. As the Earth rotates with an angular frequency of
ωE = 2π/(23.93 h), the orientation of the quantization axis and that of the electron
wave packet changes with respect to the Sun’s rest frame. The signal of a possible LV

7



2. Discussion on the Lorentz violation theory and detection schemes

Figure 2.1.: Testing LV via the orthogonally orientated states. The Earth rotates with angular
frequency ωE about its polar axis while orbiting the Sun. The angle between the magnetic field
B applied for setting the quantization axis and the Earth’s polar axis is defined as the colatitude
of the experiment being χ.

will accumulate in the phase difference between |F ,−1/2〉 and |F ,−7/2〉 and present
as eiωt. The angle χ is the colatitude of the experiment.

From Eq. 2.3, the difference in the energy levels for a single ion caused by a possible
LV acting on Yb+ ions can be calculated as [30]

∆E

h
= 5.11× 1015 Hz · (m2

J2
−m2

J1
) · C(2)

0 , (2.4)

where mJ1 and mJ2 are the two Zeeman substates to be interrogated. If we interrogate
the states |F ,±1/2〉 and |F ,±7/2〉, the energy difference is

∆E

h
= 5.11× 1015 Hz ·

[(
7

2

)2

−
(

1

2

)2
]
· C(2)

0

= 6.14× 1016 Hz · C(2)
0 ,

(2.5)

In order to monitor the modulation of the energy level caused by LV, the population
of the excited state is being monitored and fitted to a model being [18]

ν =
∆E

~
= A · sin(ωET + ϕA) +B · cos(2ωE+ϕBT ), (2.6)
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2.2. State transformation relations

where ωE = 2π/(23.93 h) is the sidereal angular frequency of the Earth’s rotation, T is
the total integration time. The A, B, C, and D coefficients depend on the c′µν tensor.
If a LV signal appears, then the local observable would oscillate at a half-day or a day
period and could be seen when fitted to the model in Eq. 2.6.

During the accumulation of the signal, we need to suppress the first order fluctuation,
specifically the magnetic field noise. Therefore, the state needs to be entangled such
that the average Zeeman shift becomes zero, and thus the fluctuation caused by the
magnetic field noise. For scheme 1 to 3, the main ideas are similar. Two ions are
prepared via quantum correlation methods to produce the target state being |ϕ〉 =
|F ,−1/2〉|F , +1/2〉+ |F ,−7/2〉|F , +7/2〉. With this state, the ions are most sensitive
to a possible LV signal as is calculated in Equ. 2.5. In addition, the state is insensitive
to magnetic field fluctuations in the first order. However, during the state preparation,
laser induced AC-Stark shift will be present and the magnetic field noise may cause
the state to dephase. The advantage for scheme 4 is that it reduces the number of
optical pulses and features a suppressed sensitivity to the linear Zeeman effect.

2.2. State transformation relations

In the discussions of a possible LV detection schemes, the Rabi model of atom-light
interaction is defined as [31] (assuming that the laser is on resonance with the transition
frequency):

1. If the state is initially in the ground state

|g〉 → cos

(
θ

2

)
|g〉 − ie−iφT sin

(
θ

2

)
|e〉; (2.7)

2. If the state is initially in the excited state

|e〉 → −ieiφT sin

(
θ

2

)
|g〉+ cos

(
θ

2

)
|e〉, (2.8)

where |g〉 is the ground state, |e〉 is the excited state and θ is the pulse area. φT is the
phase induced by the laser, which included the phase of the laser light path and the
phase caused by the laser induced AC-Stark shift.

The linear Zeeman effect is also important since 172Yb+ doesn’t have hyperfine struc-
ture with mF = 0 substate. The phase caused by the effect is given by

φB =
E

~
t =

gJµBmj|B|
~

t, (2.9)

9



2. Discussion on the Lorentz violation theory and detection schemes

Figure 2.2.: Relevant energy levels for preparing a product state in the 2F7/2 manifold. The
solid, green, arrowed line is the mixed state preparation sequence such that the state of the two
ions becomes (|S , +1/2〉1|S ,−1/2〉2 + |S ,−1/2〉1|S , +1/2〉2)/

√
2. The dotted lines correspond

to the first simultaneous π-pulse that maps the first part of the state |S , +1/2〉1|S ,−1/2〉2
to |F , +7/2〉1|F ,−7/2〉2, and the dashed lines for the second simultaneous π-pulse that maps
the second part |S ,−1/2〉1|S , +1/2〉2 to |F ,−1/2〉1|F , +1/2〉2 so that the final state becomes
(|F , +7/2〉1|F ,−7/2〉2 + |F ,−1/2〉1|F , +1/2〉2)/

√
2 for a possible LV phase signal accumulation.

where mj is the magnetic quantum number, µB is the Bohr magneton, gJ is the Landé
factor for a certain state with total spin J, and B is the magnetic field at the position
of the ions.

2.3. Scheme 1: Preparing a product state which dephases into a
mixed state

In this scheme, the intensities of the lasers that interrogate the two ions are first as-
sumed to be identical. A product state is prepared and it dephases into a mixed state
that consists of a decoherence-free entangled state with 50% probability [32].

To probe a possible LV, we simply monitor the energy difference between the two
components of the target state |ψB〉 → |F , +7/2〉1|F ,−7/2〉2 + |F ,−1/2〉2|F , +1/2〉2
using the parity oscillation. The oscillation frequency from the parity signal is ex-
tracted by fitting the whole parity oscillation curve to the model presented in Eq. 2.6.
However, this energy difference also depends on the magnetic field amplitude (causing

10



2.3. Scheme 1: Preparing a product state which dephases into a mixed state

the quadratic Zeeman effect), the magnetic field gradient, and the electric field gradi-
ent (causing the electric quadrupole shift) created by the trap.

To characterize the quadratic Zeeman effect, one can calculate it via [33, 34]

∆E
(2)
Zeeman

~
= 2π ×−2.12

mHz

(µT)2
·B ·∆B, (2.10)

where B and ∆B are the average value of the magnetic field and its uncertainty, re-
spectively.

To suppress the effect of the magnetic field gradient, we can measure the oscil-
lation frequency from the parity signal of the state |ψ+

B〉 = |F , +7/2〉1|F ,−7/2〉2 +
|F ,−1/2〉2|F , +1/2〉2 and |ψ−B〉 = |F ,−7/2〉1|F , +7/2〉2 + |F , +1/2〉2|F ,−1/2〉2 to be
f+ and f−, respectively. The contribution from the magnetic field gradient for these
two states has an opposite sign. Therefore, the averaged frequency f 0 = (f+ + f−)/2
contains the possible LV signal, and the effect of the magnetic field gradient is sup-
pressed.

To characterize the shift induced by the electric quadrupole effect, we can measure
the frequency f 0 as a function of the electric field gradient in the trap by changing the
axial secular frequency of the trap.

The two ions are optically pumped and prepared in the initial ground state of
|S,−1/2〉1|S,−1/2〉2, where the subscripts denote the respective ion. A π/2-pulse
with laser phase φL1 (transforms |S,−1/2〉 ↔ |D,−3/2〉) and a π-pulse with laser
phase φL2 (transforms |D,−3/2〉 ↔ |S, +1/2〉) on both ions is applied in sequence to
have

• |A〉 =
1

2

[
eiφ(−1/2)eiφ(−1/2)|S,−1/2〉1|S,−1/2〉2 (2.11)

+ e2i(φL2+φACL2
−φL1−φACL1)eiφ(+1/2)eiφ(+1/2)|S, +1/2〉1|S, +1/2〉2

− ei(φL2+φACL2
−φL1−φACL1)eiφ(+1/2)eiφ(−1/2) |S, +1/2〉1|S,−1/2〉2

− ei(φL2+φACL2
−φL1−φACL1)eiφ(−1/2)eiφ(+1/2) |S,−1/2〉1|S, +1/2〉2

]
,

where φACL1
and φACL2

are the phases of the laser induced AC-Stark shifts. φ(−1/2) =
g1/2µB(−1/2)|B|t/~ and φ(+1/2) = g1/2µB(+1/2)|B|t/~ are the phases caused by the
linear Zeeman effect.
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2. Discussion on the Lorentz violation theory and detection schemes

After the production of state |A〉, some waiting time can be applied. The average
phase induced by the linear Zeeman effect for the states |S,−1/2〉1|S,−1/2〉2 and
|S, +1/2〉1|S, +1/2〉2 does not equal to zero, meaning that they are not protected
from magnetic field and will dephase, leaving only the state |S, +1/2〉1|S,−1/2〉2 and
|S,−1/2〉1|S, +1/2〉2 that are protected from the magnetic field due to an average
phase of zero. |A〉 becomes

• |A〉 → − 1

2
ei(φL2+φACL2

−φL1−φACL1) (|S, +1/2〉1|S,−1/2〉2 + |S,−1/2〉1|S, +1/2〉2) .

(2.12)

Since ei(φL2+φACL2
−φL1−φACL1) is outside of the bracket of Eq. 2.12, i.e. the phase will

not show an effect if the population of the state is to be detected, so we simplify it such

that φL2 + φACL2
− φL1 − φACL1

= 0⇒ ei(φL2+φACL2
−φL1−φACL1) = 1. |A〉 is simplified as

• |A〉 → −1

2
(|S, +1/2〉1|S,−1/2〉2 + |S,−1/2〉1|S, +1/2〉2) . (2.13)

With the mixed state |A〉, four different π-pulses with laser phase φ1, φ2, φ3, φ4

correspondingly are applied with single ion addressing, as can be seen in Fig. 2.2,
transforming the state into |B〉. Two pairs of pulses are applied, where in each pair
each laser addresses only one ion. The first pair of π-pulses maps the population in
|S, +1/2〉 to |F , +7/2〉 and the population in |S,−1/2〉 to |F ,−7/2〉. The second pair
of pulses maps the remaining population of each ion from |S,−1/2〉 to |F ,−1/2〉 and
|S, +1/2〉 to |F , +1/2〉. Thus the state |B〉 reads:

• |B〉 =
1√
2
|ψB〉 (2.14)

=
1

2

[
e−i(φ1+φAC1

+φ2+φAC2)|F , +7/2〉1|F ,−7/2〉2

+ e−i(φ3+φAC3
+φ4+φAC4)|F ,−1/2〉1|F , +1/2〉2

]
,

where φAC1 , φAC2 , φAC3 , and φAC4 are the AC-Stark shifts induced by the 4 different
laser pulses. |ψB〉 is the desired state. Next, one waits the time T to accumulate a
potential phase shift due to LV. It induces a relative phase shift eiδT = eiψ to the
desired state |ψB〉, such that

• |ψB〉 =
1√
2

[
eiψ · e−i(φ1+φAC1

+φ2+φAC2)|F , +7/2〉1|F ,−7/2〉2 (2.15)

+ e−i(φ3+φAC3
+φ4+φAC4)|F ,−1/2〉1|F , +1/2〉2

]
.
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2.3. Scheme 1: Preparing a product state which dephases into a mixed state

To extract the possible LV signal, the state is manipulated by operating the pulses
the other way around, i.e. four π-pulses with laser phase φ′1, φ

′
2, φ

′
3, φ

′
4, respectively.

Two pairs of pulses are applied, where in each pair each laser addresses only one ion.
The first pair of π-pulses maps the population in |F , +7/2〉 back to |S, +1/2〉 and the
population in |F ,−7/2〉 to |S,−1/2〉. The second pair of pulses maps |F ,−1/2〉 to
|S,−1/2〉 and |F , +1/2〉 to |S, +1/2〉,

• |ψ′B〉 =− 1√
2

[
eiψ · ei(ϕ1+ϕAC1

+ϕ2+ϕAC2)|S, +1/2〉1|S,−1/2〉2 (2.16)

+ ei(ϕ3+ϕAC3
+ϕ4+ϕAC4)|S,−1/2〉1|S, +1/2〉2

]
,

where ϕk = φ′k − φk and ϕACk = φ′ACk
− φACk , (k = 1, ..., 4). Next, a π-pulse is applied

on both ions with laser phase φ′L2 (transforms |S, +1/2〉 ↔ |D,−3/2〉),

• |ψ′B〉 →
i√
2
e
−i

(
φ′L2+φ

′
ACL2

)[
eiψ · ei(ϕ1+ϕAC1

+ϕ2+ϕAC2)|D,−3/2〉1|S,−1/2〉2 (2.17)

+ ei(ϕ3+ϕAC3
+ϕ4+ϕAC4)|S,−1/2〉1|D,−3/2〉2

]
.

By setting e
−i

(
φ′L2+φ

′
ACL2

)
= 1, and applying a π/2-pulse of laser phase φ′L1

(transforms |D,−3/2〉 ↔ |S,−1/2〉), the state becomes

• 2
√

2|ψ′B〉 → e
i
(
φ′L1+φ

′
ACL1

)[
eiψ · ei(ϕ1+ϕAC1

+ϕ2+ϕAC2) + ei(ϕ3+ϕAC3
+ϕ4+ϕAC4)

]
(2.18)

· |S,−1/2〉1|S,−1/2〉2

+ e
−i

(
φ′L1+φ

′
ACL1

)[
eiψ · ei(ϕ1+ϕAC1

+ϕ2+ϕAC2) + ei(ϕ3+ϕAC3
+ϕ4+ϕAC4)

]
· |D,−3/2〉1|D,−3/2〉2

+ i
[
eiψ · ei(ϕ1+ϕAC1

+ϕ2+ϕAC2) − ei(ϕ3+ϕAC3
+ϕ4+ϕAC4

)
]
|D,−3/2〉1|S,−1/2〉2

+ i
[
ei(ϕ3+ϕAC3

+ϕ4+ϕAC4) − eiψ · ei(ϕ1+ϕAC1
+ϕ2+ϕAC2)

]
|S,−1/2〉1|D,−3/2〉2.

For simple reading, we define |S,−1/2〉1|S,−1/2〉2 ≡ |SS〉, |D,−3/2〉1|D,−3/2〉2 ≡
|DD〉, |D,−3/2〉1|S,−1/2〉2 ≡ |DS〉, and |S,−1/2〉1|D,−3/2〉2 ≡ |SD〉. The diagonal

13



2. Discussion on the Lorentz violation theory and detection schemes

term of the density matrix of the state |B〉 = |ψ′B〉/
√

2 is

• |B〉〈B| = 1

2× 8
(2.19)

×
{

[2 + 2 cos(ψ + ∆)] |SS〉〈SS|+ [2 + 2 cos(ψ + ∆)] |DD〉〈DD|

+ [2− 2 cos(ψ + ∆)] |DS〉〈DS|+ [2− 2 cos(ψ + ∆)] |SD〉〈SD|
}

= PSS · |SS〉〈SS|+ PDD · |DD〉〈DD|+ PDS · |DS〉〈DS|+ PSD · |SD〉〈SD|,

where ∆ := ϕ1 + ϕAC1 + ϕ2 + ϕAC2 − ϕ3 − ϕAC3 − ϕ4 − ϕAC4 . PSS, PDD, PDS, and PSD

are the probabilities of finding the ions in the corresponding states. Hence, the parity
oscillation signal given by P = PSS + PDD − PDS − PSD is

P = PSS + PDD − PDS − PSD =
1

2
cos(ψ + ∆), (2.20)

where 1/2 comes from the fact that only half of the mixed state was protected from
the magnetic field.

In actual experiments, the intensity of the laser on each ion is not the same, this
causes a relative phase between the two addressing lasers. Eq. 2.13 becomes

− 1

2

(
eiφXY |S, +1/2〉1|S,−1/2〉2 + |S,−1/2〉1|S, +1/2〉2

)
, (2.21)

where eiφXY is the relative phase between the two ions while preparing the mixed state.
Since this relative phase term acts the same way as the LV phase signal, the parity
oscillation signal becomes

P = PSS + PDD − PDS − PSD =
1

2
cos(ψ + ∆ + φXY ). (2.22)

2.4. Scheme 2: Direct mapping of the ions onto the 2F7/2 state
via two-frequency bichromatic laser

Different from scheme 1 [17], the advantage of using a two-frequency bichromatic laser
is that it can directly map the initial state to the 2F7/2 manifold rather than first prepar-
ing the state to the magnetic field protected |S, +1/2〉1|S,−1/2〉2+|S,−1/2〉1|S, +1/2〉2
with subsequent mapping to the 2F7/2 substates. This scheme would be of advantage

14



2.4. Scheme 2: Direct mapping of the ions onto the 2F7/2 state via two-frequency bichromatic laser

Figure 2.3.: Relevant energy levels for preparing the mixed state using a two-frequency bichro-
matic laser. The initial state is prepared into |S ,−1/2〉1|S , +1/2〉2 and with the octupole laser,
the mixed state is created directly on the 2F7/2 manifold. φ1 to φ4 are defined as π/2-pulse laser
phases.

if the magnetic field is so stable that the state during the pulse time does not de-
phase. The total optical pulse interrogation time of each measurement cycle would
be decreased by a π-pulse time: the total interrogation time with the octupole laser
would be the sum of two π-pulses and two π/2-pulses while scheme 1 requires a total
interrogation time of four π-pulses.

As shown in Fig. 2.3, the initial state needs to be prepared as |S,−1/2〉1|S, +1/2〉2
via addressing each ion individually with different circular polarized light. π/2- and
π-pulses are applied to obtain the desired state for detection. The π/2-pulse laser
phases are defined as

φ1 := |S,−1/2〉 ↔ |F ,−1/2〉;
φ2 := |S,−1/2〉 ↔ |F ,−7/2〉;
φ3 := |S, +1/2〉 ↔ |F , +1/2〉;
φ4 := |S, +1/2〉 ↔ |F , +7/2〉.

(2.23)

First, a pair of π/2-pulses is applied, where the laser with phase φ1 acts on ion 1
and φ4 acts on ion 2. Next, a pair of π-pulses is applied with φ2 on ion 1 and φ3

on ion 2. The states proportional to |F ,−7/2〉1|F , +1/2〉2 and |F ,−1/2〉1|F , +7/2〉2
dephase since they are not protected from the magnetic field, leaving only the states
|F ,−1/2〉1|F , +1/2〉2 and |F ,−7/2〉1|F , +7/2〉2. With some waiting time T , a possible
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2. Discussion on the Lorentz violation theory and detection schemes

LV phase signal is accumulated

• |B〉 =
1√
2
|ψB〉 (2.24)

=
1

2

[
eiψ · e−i(2φ2+φ4+2φAC2

+φAC4)|F ,−7/2〉1|F , +7/2〉2

+ e−i(φ1+2φ3+φAC1
+2φAC3)|F ,−1/2〉1|F , +1/2〉2

]
.

And with the π/2- and π-pulses operated the other way around

• |ψ′B〉 =
i

2
√

2

{
i
[
eiψ · ei(2ϕ2+2ϕAC2

+ϕ4+ϕAC4) + ei(ϕ1+ϕAC1
+2ϕ3+2ϕAC3)

]
(2.25)

· |S,−1/2〉1|S, +1/2〉2

+
[
eiψ · ei(2ϕ2+2ϕAC2

+ϕ4+ϕAC4)e−i(φ
′
1+φ

′
AC1

) − ei(2ϕ3+2ϕAC3)e−i(φ1+φAC1)
]

· |F ,−1/2〉1|S, +1/2〉2

+
[
ei(ϕ1+ϕAC1

+2ϕ3+2ϕAC3)e−i(φ
′
4+φ

′
AC4

) − eiψ · ei(2ϕ2+2ϕAC2)e−i(φ4+φAC4)
]

· |S,−1/2〉1|F , +7/2〉2

+ i
[
eiψ · ei(2ϕ2+2ϕAC2)e−i(φ

′
1+φ

′
AC1

+φ4+φAC4) + ei(2ϕ3+2ϕAC3)e−i(φ1+φAC1
+φ′4+φ

′
AC4

)
]

· |F ,−1/2〉1|F , +7/2〉2
}

,

where ϕk = φ′k − φk and ϕACk = φ′ACk
− φACk , (k = 1, 2, 3, 4).

Similarly, by defining |S,−1/2〉1|S,−1/2〉2 ≡ |SS〉, |F ,−1/2〉1|F , +7/2〉2 ≡ |FF 〉,
|F ,−1/2〉1|S, +1/2〉2 ≡ |FS〉, and |S,−1/2〉1|F , +7/2〉2 ≡ |SF 〉, the diagonal terms
of the density matrix of the state |B〉 = |ψ′B〉/

√
2 becomes

• |B〉〈B| = 1

2× 8
(2.26)

×
{

[2 + 2 cos(ψ + ∆)] |SS〉〈SS|+ [2 + 2 cos(ψ + ∆)] |FF 〉〈FF |

+ [2− 2 cos(ψ + ∆)] |FS〉〈FS|+ [2− 2 cos(ψ + ∆)] |SF 〉〈SF |
}

= PSS · |SS〉〈SS|+ PDD · |FF 〉〈FF |+ PDS · |FS〉〈FS|+ PSD · |SF 〉〈SF |,
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2.5. Scheme 3: Using a Mølmer Sørensen gate to produce fully entangled state

Figure 2.4.: The schematic drawing of the Mølmer Sørensen gate [26]. A bichromatic laser field
with frequencies ωb, ωr satisfying 2ω0 = ωb +ωr is tuned close to the upper and lower motional
sideband of the qubit transition ω0. ν is the secular frequency and δ is the detuning of the laser
relative to the sidebands. The field couples the qubit states | ↓↓〉 ↔ | ↑↑〉 via the four interfering
paths shown.

where ∆ := ϕ4 + ϕAC4 + 2ϕ2 + 2ϕAC2 − ϕ1 − ϕAC1 − 2ϕ3 − 2ϕAC3 . Hence, the parity
oscillation signal is

P = PSS + PFF − PFS − PSF =
1

2
cos(ψ + ∆). (2.27)

2.5. Scheme 3: Using a Mølmer Sørensen gate to produce fully
entangled state

To compensate for the losses of contrast, an effective way would be to create a fully
entangled state instead of having a product state that dephases into a mixed state.
One way of doing so is to use a Mølmer Sørensen gate [26–28] as shown in Fig. 2.4. As
a starting point, the initial state is prepared to be |S,−1/2〉1|S,−1/2〉2. The formula
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2. Discussion on the Lorentz violation theory and detection schemes

of the state transformation in Fig. 2.4 is

|gg〉 → cos

(
Ω̃T

2

)
|gg〉+ i sin

(
Ω̃T

2

)
|ee〉, (2.28)

where |g〉 and |e〉 represents the ground state and the excited state, respectively.

When the Lamb-Dicke parameter and Rabi-frequency for the red and blue sideband
is η1 = η2 = η and Ω1 = Ω2 = Ω The effective Rabi frequency is defined as

Ω̃ = −(Ωη)2

ν − δ
, (2.29)

where Ω0 is the carrier Rabi frequency, η is the Lamb-Dicke parameter, ν is the secular
frequency, and δ is the detuning of the laser relative to the sidebands. With Eq. 2.28
and the gate time fulfilling Ω̃T = π/2, the state becomes

1√
2

(|S,−1/2〉1|S,−1/2〉2 + i|D,−3/2〉1|D,−3/2〉2). (2.30)

Next, a π/2-pulse with laser phase φL (transforms |D,−3/2〉 ↔ |S,−1/2〉) is applied
to obtain state |A〉

• |A〉 =
1

2
√

2

{ [
1− ie2i(φL+φAC)

]
|S,−1/2〉1|S,−1/2〉2 (2.31)

+
[
i− e−2i(φL+φAC)

]
|D,−3/2〉1|D,−3/2〉2

+
[
ei(φL+φAC) − ie−i(φL+φAC)

]
|D,−3/2〉1|S,−1/2〉2

+
[
ei(φL+φAC) − ie−i(φL+φAC)

]
|S,−1/2〉1|D,−3/2〉2

}
,

where φAC is the AC-Stark shift induced by the π/2-pulse. If φL + φAC = −π/4 ⇒
1− ie2i(φL+φAC) = 0, the state becomes

• |A〉 → 1

2
(1− i)(|D,−3/2〉1|S,−1/2〉2 + |S,−1/2〉1|D,−3/2〉2). (2.32)

A π-pulse with laser phase φL1 (transforms |D,−3/2〉 ↔ |S, +1/2〉) is applied to
produce the magnetic field protected state |S, +1/2〉1|S,−1/2〉2+ |S,−1/2〉1|S, +1/2〉2
for mapping to the 2F7/2 manifold:

• |B〉 =
1

2
ei(φL1+φACL1)(−i− 1)(|S, +1/2〉1|S,−1/2〉2 + |S,−1/2〉1|S, +1/2〉2),

(2.33)
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2.6. Scheme 4: Using dynamical decoupling to produce a mixture of Zeeman substates

and similarly the phase terms outside of the state brackets can be neglected such that

• |B〉 → 1

2
(−i− 1)(|S, +1/2〉1|S,−1/2〉2 + |S,−1/2〉1|S, +1/2〉2). (2.34)

Comparing Eq. 2.34 with Equ. 2.13, the only difference is that there is a fac-
tor (−i − 1). With the same method of mapping the state |S, +1/2〉1|S,−1/2〉2 +
|S,−1/2〉1|S, +1/2〉2 to the corresponding 2F7/2 Zeeman substates and extracting the
LV signal, the parity oscillation signal P is also obtained and is

P = PSS + PDD − PDS − PSD = cos(ψ + ∆), (2.35)

where ∆ := ϕ1 + ϕAC1 + ϕ2 + ϕAC2 − ϕ3 − ϕAC3 − ϕ4 − ϕAC4 .

The advantage of using a Mølmer Sørensen gate is as mentioned that a fully entangled
state can be obtained and therefore the full contrast of the signal can be obtained. But
the disadvantage is that it would potentially take longer to prepare an entangled state
in the 2S1/2 manifold.

2.6. Scheme 4: Using dynamical decoupling to produce a mixture
of Zeeman substates

Scheme 1 to 3 suppress the magnetic field noise in the first order via exploiting quan-
tum correlation and prepare the ions in an entangled state the average of the linear
Zeeman shift being zero. However, the scaling of the numbers of ions with quantum
correlation is limited and hard to obtain. Also laser induced AC-Stark shift may result
in the decoherence of the state during the preparation process. A promising technique
to implement dynamical decoupling in the 2F7/2 manifold. With this method, less
optical pulses are needed, no AC-Stark shift will be present due to radio-frequency
(RF) operations, and measurements can be done with multiple ions. As discussed in
[35], this method could potentially suppress the effect of the fluctuating magnetic field
without a significant loss of sensitivity.

The Hamiltonian of the linear Zeeman effect is

Ĥlin = −µzBzĴz, (2.36)

where µz is the magnetic moment, B = Bzẑ is the weak external magnetic field and
Ĵz is the angular momentum operator component of Ĵ in the ẑ direction with eigen-
values mj~, mj has elements −J to +J in integer steps. Assume a small energy shift
proportional to m2

j that can result from the second-order Zeeman shift, the electric
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2. Discussion on the Lorentz violation theory and detection schemes

quadrupole shift caused by the inherent electric field gradient in the ion trap, and
from possible LV signal. The Hamiltonian of this quadratic term can be written as

Ĥquad = κĴ2
z . (2.37)

Therefore, the free evolution Hamiltonian is

Ĥfree = Ĥlin + Ĥquad

= −µzBzĴz + κĴ2
z .

(2.38)

Assuming that the system can be driven with a RF oscillating magnetic field tuned
close to the resonance frequency of the linear Zeeman splitting energy, such that

ωRF =
µzBz

~
+ δ(t), (2.39)

where δ(t) is caused by the fluctuation of magnetic field at the ion’s position. The
Hamiltonian of this time dependent coupling term is

Ĥcoup = Ω(t) cos(ωRFt+ φ)Ĵx, (2.40)

where Ω is the multi-level Rabi frequency and φ is the RF phase. The total Hamiltonian
is

Ĥtotal = Ĥfree + Ĥcoup

= −µzBzĴz + κĴ2
z + Ω(t) cos(ωRFt+ φ)Ĵx.

(2.41)

By moving to the interaction picture with respect to the oscillating magnetic field,
applying the rotating wave approximation, and assuming that Ω0 >> κ, the evolution
Hamiltonian becomes

Ĥtotal → −δ(t)Ĵz + κĴ2
z + Ω(t)[Ĵx cos(φ)− Ĵy sin(φ)]. (2.42)

The dynamical decoupling method aims to measure κ while ignoring the unwanted
magnetic field noise δ(t) by a periodic modulation of Ω and φ. The scheme sequence
performs as below and is visualized in Fig. 2.5:

1. Fig. 2.5a: the ion is initialized to a spin state Ĵ in a specific Ĵz eigenstate |J ,mj =
m′〉;

2. Fig. 2.5b: a resonant pulse with duration of τ = π/(2Ω0) (π/2-pulse) and with
phase defined as φ = 0 is applied. The evolution operator is ei(πJx/2) and this
maps the spin state to the corresponding Jy eigenstate, i.e. it acts as the first
π/2-pulse of a Ramsey sequence [36];
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2.6. Scheme 4: Using dynamical decoupling to produce a mixture of Zeeman substates

3. Modulation sequence: (numbers in the bracket is the corresponding subgraphs in
Fig. 2.5)

[tω] (2.5c) → [π+y] (2.5d) → [2tω] (2.5e) → [π−y] (2.5f) → [tω] (2.5g)
(2.43)

where tω is the waiting time between pulses where the spin evolves freely. It is
chosen such that during the 4tω time, the magnetic field fluctuation δ(t) changes
slowly and is effectively constant. π±y are RF pulses with duration of π/Ω0 with
φ = ±π/2. The phase φ = ±π/2 gives a ±90 ◦ shift for the starting point of the
pulse on the equator as shown in Fig. 2.5d and 2.5f;

4. n repetitions of the modulation sequence. The phase φ = π of the second RF
π/2-pulse in the next step is chosen such that the Ramsey fringe has a maximal
sensitivity to a possible LV signal [35]. One repetition of the modulation sequence
brings the population of the state to point B. An even number of repetitions
brings the population of the state to point A. In order to bring the population
back to the initialized |J ,mj = m′〉 state by means of a second RF π/2-pulse
with an phase φ = π, an even number of repetition n is required;

5. Fig. 2.5h: a second RF π/2-pulse is applied with a phase φ = π with respect to
the first RF π/2-pulse to bring the population of the state back to the initialized
|J ,mj = m′〉 state.

At step 3, the evolution operator of the spin system during the modulation sequence
is

Û = ei(−δtω Ĵz+κtω Ĵ
2
z) · ei(−πĴy) · ei(−2δtω Ĵz+2κtω Ĵ2

z) · ei(+πĴy) · ei(−δtω Ĵz+κtω Ĵ2
z). (2.44)

With the commutation relation
[
Ĵ2
z , ei(±πĴy)

]
= 0, the signal term κĴ2

z generates a

phase shift which is coherently accumulated during the sequence. Since
[
Ĵz, e

i(±πĴy)
]
6=

0, the phase due to the magnetic field noise term δ(t)Jz is largely reduces by averaging.

The operation ei(−πĴy) · A · ei(+πĴy) acts as a π rotation of the operator A around the
ŷ axis, and this transforms +Ĵz to −Ĵz, i.e.

ei(−πĴy) · ei(−2δtω Ĵz+2κtω Ĵ2
z) · ei(+πĴy) → ei(+2δtω Ĵz+2κtω Ĵ2

z), (2.45)

and the evolution operator Û in the approximation of the slowly varying δ(t) becomes

ei(4κtω Ĵ
2
z) and the phase due to the linear Zeeman effect cancels out. And with n

repetitions in step 4 with total time of T = 4ntω, the evolution from the modulation

sequence becomes Û = ei(κT Ĵ
2
z). The evolution operator of the entire sequence is

Û = ei(−
π
2
Ĵx) · ei(κT Ĵ2

z) · ei(
π
2
Ĵx) (2.46)
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2. Discussion on the Lorentz violation theory and detection schemes

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5.: The visualization of scheme 4. (a) Ion is initialized to a specific state |J, mj = m′〉.
(b) A resonant RF π/2-pulse with φ = 0 maps the spin state to the corresponding Ĵy eigenstate.
(c) A free evolution time tω. (d) A π-pulse with φ = +π/2. (e) A free evolution time 2tω.
(f) A π-pulse with φ = −π/2. (g) A free evolution time tω. (h) A second RF π/2-pulse with
φ = π. The phase value of the second RF π/2-pulse is chosen such that the Ramsey fringe has a
maximal sensitivity to a possible LV signal [35]. One repetition of the modulation sequence brings
the population of the state to point B, and even numbers of repetitions bring the population of
the state to point A. In order to bring the population back to the initialized |J, mj = m′〉 state
with a second RF π/2-pulse having a phase φ = π, even number of repetition n is required.
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2.7. Sensitivity estimations and comparison of scheme 1-4

where the phase of the last π/2-pulse can be used to account for any systematic con-
stant imbalance between wait times that could arise from experimental imperfection.

Finally, the population in the initial state, PJ ,m′(κT ,φ) = |〈J ,m′|Û |J ,m′〉|2, is mea-
sured. To extract the possible LV signal, the results of sequential measurements in
time of PJ ,m′(κT ,φ) is monitored and fitted to the model expressed mathematically
as Eq. 2.6 to see if there is any oscillation signal referring to the theoretical sidereal day.

We want to interrogate the transition which has the least sensitivity to magnetic field,
i.e. the smallest linear Zeeman shift. This is the |S,−1/2〉 ↔ |F ,−1/2〉 transition with
a Zeeman sensitivity of 0.60 MHz/G. The operation of the scheme with 172Yb+ ions is
as follows:

1. 172Yb+ ions are optically pumped to |S,−1/2〉;

2. Excite the ions to the initial experimental state |F ,−1/2〉 with a π-pulse of 467 nm
laser;

3. The first RF π/2-pulse with Ω0 is performed such that all the Zeeman substates
are coupled and populated. Ω0 is the Rabi frequency corresponding to the Zeeman
splitting energy;

4. Apply the modulation sequence with even number of n repetitions;

5. The second RF π/2-pulse is applied to close the sequence;

6. Monitor the state population of |F ,−1/2〉 in time to see if there is any oscillation
of the population corresponding to a possible LV signal.

2.7. Sensitivity estimations and comparison of scheme 1-4

The upper bound limit of the Lorentz violation parameter ∆C
(2)
0 provided by the SME

theory with the method exploiting quantum correlation has been estimated in [30].
To know if the method with dynamical decoupling is comparable to using quantum
correlation, the sensitivity of it needs to be estimated. In this section, the sensitivity
of the different method will be estimated and compared.

The precision of the measurement is given by ∆κ [35]. For scheme 3 [30], where a
fully entangled pair of Yb+ ions is assumed, ∆κ can be calculated using [35]

∆κ = 0.083
rad

N
√
τT

, (2.47)
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2. Discussion on the Lorentz violation theory and detection schemes

where T , τ , and N are the Ramsey time, total integration time, and the number of
spin probes, correspondingly. By comparing Eq. 2.4 to Eq. 2.47, one can calculate the

precision ∆C
(2)
0QC

[37]:

∆E

h
=
(
m2
j2
−m2

j1

)
· ∆κ

2π
= 5.11× 1015 Hz ·

(
m2
j2
−m2

j1

)
·∆C(2)

0QC
. (2.48)

Therefore, ∆C
(2)
0QC

is

∆C
(2)
0QC

=
0.083 rad

N
√
τT

2π
× 1

5.11× 1015
=

2.58× 10−18

N
√
τT

. (2.49)

Due to the fact that only 50% of the mixed state is in the entangled state in scheme 1

and 2, ∆C
(2)
0QC

would be a factor of 2 larger than scheme 3 where a fully entangled ion
pair is discussed.

For scheme 4, ∆κ is [35]

∆κ = 0.1
rad√
NτT

, (2.50)

and ∆C
(2)
0DD

can be calculated as

∆C
(2)
0DD

=
3.11× 10−18√

NτT
. (2.51)

The smaller the value of ∆C
(2)
0 , the more sensitive the experiment is to the signal

of a possible LV. From the equation, we see that the sensitivity with fully entangled

ions via quantum correlation is ∆C
(2)
0QC
∝ 2.58/N which scales down with the number

of ions N , ∆C
(2)
0DD
∝ 3.11/

√
N . Therefore, with no experimental limitations, quantum

correlation method would be better. However, due to the fact that the scaling of ion
numbers with quantum correlation is much harder than with dynamical decoupling
and that the coherence time decreases with the increasing number of ions, dynamical
decoupling would be easier and more straight forward.

A list of calculated sensitivities via dynamical decoupling with different interroga-
tion time, total averaging time, and ion numbers can be found in Table 2.1 and 2.2.
From the estimation, it can be seen that with 2 ions, the sensitivity of 8.1× 10−21 can
already be reached in 24h of integration time.
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2.7. Sensitivity estimations and comparison of scheme 1-4

Number of ions/Interrogation time T T=0.1 s T=1 s T=10 s

2 2.4× 10−20 7.4× 10−21 2.4× 10−21

5 1.5× 10−20 4.7× 10−21 1.5× 10−21

10 1.1× 10−20 3.3× 10−21 1.1× 10−21

Table 2.1.: Table of sensitivity ∆C
(2)
0 for a total averaging time of 24 h. The number of ions in

an ion chain is chosen as 2, 5, and 10. The interrogation time is chosen to be 0.1 s, 1 s, and 10 s.

Number of ions/Interrogation time T T=0.1 s T=1 s T=10 s

2 1.1× 10−20 3.3× 10−21 1.1× 10−21

5 6.7× 10−21 2.1× 10−21 6.7× 10−22

10 4.7× 10−21 1.5× 10−21 4.7× 10−22

Table 2.2.: Table of sensitivity ∆C
(2)
0 for a total averaging time of 5×24 h. The number of ions

in an ion chain is chosen as 2, 5, and 10. The interrogation time is chosen to be 0.1 s, 1 s, and
10 s.
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3. Experimental setup

This chapter discusses the experimental setup for the test of LV. First, the octupole
laser source to be implemented in the LV experiment is introduced. This is the laser
light that is shared with PTB’s 171Yb+ single-ion optical clock. Then the setup of the
934 nm laser breadboard used for bridging the frequency of the two Yb+ isotopes will
be shown, in particularly the slave diode lasers for intensity enhancement, the high
frequency (HF) acousto-optic modulator (AOM) for bridging the frequency difference
of the two Yb+ isotopes, and the sealed slave. Next, the 467 nm laser breadboard for
frequency doubling and scanning of the octupole laser will be shown with particular
interest on the second-harmonic-generation (SHG) waveguide.

3.1. The octupole laser for the 171Yb+ single-ion optical clock

In order to interrogate the octupole transition in 172Yb+, a fractional amount of the
laser light (≈ 8 mW) at 934 nm used in the single-ion 171Yb+ clock at PTB is shared.
The laser light is transferred to the 172Yb+ ion experiment via a telecommunication
fiber link between the two buildings Kopfermann-Bau and Giebe-Bau. The frequency
difference between the two different isotopes of Yb+ ions is 4711.5 MHz with an un-
certainty of 700 kHz [33].

As shown in Fig. 3.1, most of the laser light at 934 nm in Kopfermann-Bau is used
for the single-ion 171Yb+ clock. The frequency of it, denoted by ν934 nm in Fig. 3.1, is
shifted by an AOM by +80 MHz and frequency doubled with a SHG waveguide. A
double-pass AOM is then used to sweep the frequency of the laser light for the inter-
rogation of the octupole transition in 171Yb+.

The source of the ν934 nm laser light is an external-cavity diode laser (ECDL). It is
first locked to an ultra-low-expansion (ULE) cavity as a short term reference such that
the instability of the laser reaches a level of 10−16 in a second. A second stabilization
stage is realized by referencing the frequency of the laser to the silicon cavity [38] at
Paschen-Bau via a frequency comb. The instability of the laser then reaches a level
of 5 × 10−17 within seconds of averaging time. The frequency of the 934 nm laser is
ν934 nm = 321 060 742.386 322 5 MHz with an uncertainty at sub-hertz level.
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3. Experimental setup

Figure 3.1.: Schematic overview of laser light preparation for the interrogation of the octupole
transition of 172Yb+. The frequency of the small fractional amount of laser light transferred to the
172Yb+ LV experiment is ν934 nm = 321 060 924.742 322 5MHz with an uncertainty at hundred
hertz level. The instability of the laser reaches a level of 5 × 10−17 within seconds of averaging
time. The frequency difference between the two different isotopes of Yb+ ions is 4711.5MHz
with an uncertainty of 700 kHz [33].

A small fraction of this laser light at 934 nm is frequency shifted by +182 MHz and
sent through the telecommunication fiber to the 172Yb+ experiment, arriving at the
934 nm breadboard. This same AOM is used for fiber phase stabilization together with
another AOM (this AOM is not shown in Fig. 3.1) at the output port of the fiber. The
zeroth order of the AOM at the output port of the fiber is used as the injection laser
for the first slave laser and the −1st-order is sent back with a mirror through the fiber
for fiber phase stabilization.

3.2. 934nm breadboard

Fig. 3.2 shows the schematic setup of the 934 nm breadboard. The laser light from
Kopfermann-Bau exits the fiber holder with ≈ 1 mW of optical power. In order to have
enough power at 467 nm for the interrogation of the octupole transition, two slave diode
lasers (SDL) are implemented. First, the Kopfermann-Bau laser is injected into the
first SDL, which enhances the power to ≈50 mW. The enhanced light passes through
an AOM that shifts the frequency of the laser by 2320.1 MHz. The −1st-order of the
AOM is injected into a second SDL for another power enhancement before transferring
it into the waveguide for frequency doubling.
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3.2. 934nm breadboard

Figure 3.2.: Schematic drawing of the 934 nm breadboard. The fiber transferring the laser light
from the 171Yb+ optical clock is mounted in a rigid fiber holder. Two slave diode lasers (SDL)
are used on this breadboard. A HF AOM that shifts the frequency of the laser by 2320.1MHz is
implemented to bridge the frequency gap between the two Yb+ isotopes. A typical optical power
of 155mW is measured at point A. The fiber transfers the laser light to the SHG waveguide.

3.2.1. Slave diode lasers

————————————————————————————— In order to increase
the intensity of a laser while maintaining its spectral properties, it is often essential to
build a high-power SDL. The laser diode used in the slave is a high power single mode
laser diode1. It has a maximum optical output power of 300 mW and an operating
temperature range from −10 ◦C to 30 ◦C. With a fixed optical output power, the cen-
ter of the optical spectrum shifts as the temperature changes as is shown in Fig. 3.3.
In the figure, the optical spectra of a free-running SDL at two different temperatures
are recorded with an optical spectrum analyzer (OSA). The operating current is fixed
at 200 mA. As can be seen, the center of the spectrum is shifted to lower wavelength
as the temperature of the SDL is decreased. At 20.8 ◦C, the center of the spectrum is
around 941 nm; at 17.6 ◦C, the center of the spectrum is around 939 nm. This means

1Toptica #LD-0940-0300-1
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3. Experimental setup
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Figure 3.3.: Optical spectrum of a free-running SDL with an operating current of 200mA
at different temperatures. The center of the spectrum shifts from 941 nm to 939 nm as the
temperature decreases from 20.8 ◦C (red, dashed line) to 17.6 ◦C (black, solid line).
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3.2. 934nm breadboard

(a) (b)

Figure 3.4.: Elements for temperature control. (a) Thermistor. (b) Peltier element.

that at lower temperatures, the center of the spectrum is closer to 934 nm, and a lesser
optical injection power at 934 nm is needed in order to lock the SDL at 934 nm. For
temperature stabilization of the SDL, a thermistor2 (Fig. 3.4a) and peltier element3

(Fig. 3.4b) connected to a temperature controller4 is used.
—————————————————————————————–

After assembling the SDL, the laser needs to be collimated. This is done by altering
the distance between the laser diode and the lens as can be seen in Fig. 3.5. The beam
profile of the laser beam produced by this laser diode is elliptical, and the measured
ellipticity is 9:1. To manipulate the beam profile such that it is circular and almost
Gaussian, an arrangement of two anamorphic prisms is needed. A schematic drawing
of the prism pair is shown in Fig. 3.6. With the prism pair, the ratio of the horizontal
waist by the vertical waist changes from 9:1 to 4.5:1. To make the beam even closer
to a symmetric Gaussian beam, cylindrical lenses with focal lengths being +100 mm
and −50 mm are used for the first SDL and cylindrical lenses with focal lengths being
+50 mm and −20 mm are used for the second SDL as shown in Fig. 3.2.

One example of the SDL being locked to the master laser is shown is Fig. 3.7. The
figure shows the optical spectrum of the laser diode taken with an OSA. The red, solid
line represents the spectrum of the free-running laser diode and the black, solid line
represents the spectrum when the master laser is injected. As can be seen, when the
temperature is not optimized, the laser diode will not lock to the master laser. The
blue, solid line represents the spectrum when the master laser is injected and the tem-
perature of the laser diode is optimized (the temperature is lowered). When the SDL
is locked to the master laser, the suppression obtained is ≈ 40 dB.

2Thorlabs TH10K
3Thorlabs TEC3-2.5
4Thorlabs TED200C
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3. Experimental setup

Figure 3.5.: The assembled SDL. With an allen key, the lens holder can be adjusted for laser
beam collimation.

Figure 3.6: The anamorphic prism
pair. It scales down one axis or magni-
fies it depending on the propagating di-
rection of the laser beam. The orange
lines are a sketch to get an intuition for
the beam path.

3.2.2. High frequency AOM

Fig. 3.8a shows the HF AOM5 used to shift the frequency of the 934 nm laser by
2320.1 MHz. The AOM is glued to a homemade mount that can rotate and tilt for
the alignment of the AOM with respect the incident beam. The source of the AOM is
created by a PTB-made DDS synthesizer which generates 2320.1 MHz and is amplified
with an amplifier6 to 30 dBm signal output power. The source is referenced to a 10 MHz
maser signal. The AOM can withstand a maximum incident laser power of 50 mW with
a waist of 37.5µm and has a −1st-order diffraction efficiency of 1.3 %.

3.2.3. Sealed slave

With 50 mW of incident laser power and a −1st-order diffraction efficiency of 1.3 % for
the AOM, the −1st-order diffraction output power of the AOM is 650 µW. This power
is so low that the frequency-doubled 467 nm laser power after the waveguide will not be
enough to interrogate the octupole transition. Therefore, a second SDL is implemented
to enhance the power of the frequency-shifted 934 nm laser. The −1st-order diffraction
beam of the HF AOM acts as the injection laser for the second SDL. To obtain tens
of mW of power at 467 nm at the ion, the input beam of the waveguide (measured at

5Brimrose, GPF-2360-100-934
6Qorvo, TQP9111
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3.2. 934nm breadboard
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Figure 3.7.: Optical spectrum of the laser diode. A free-running laser diode would have a
spectrum centered around 938 nm as shown with the red line, and the laser diode seeded with the
master laser would have a center at 934 nm. Without optimized temperature of the laser diode,
the SDL would not lock to the injected master laser, the spectrum of it is the black line. When
the temperature is optimized and the amount of injection power for the master laser is above the
minimum value, the SDL locks to the master laser and the spectrum looks like the blue line.
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3. Experimental setup

(a) (b)

Figure 3.8.: (a) 2320.1MHz HF AOM for bridging the frequency between the two Yb+ isotopes.
This AOM has 1.3% of −1st-order diffraction efficiency. (b) The sealed slave with heat sinks
sticked to the surface of the housing via heat conducing tape.

point A as shown in Fig. 3.2) needs to be more than 100 mW. After all the optical
elements, the injection power for the second SDL is 550 µW. Due to limited injection
power, the temperature of the SDL needs to be stabilized at a lower point (lower than
the room temperature) so that the amount of injection power needed for the SDL to be
locked decreases. To be able to decrease the stabilized temperature without damaging
the laser diode due to air moisture, a laser housing has been manufactured by Martin
Menzel, a co-worker from PTB. The laser housing is mechanically sealed and filled with
Argon gas so that there is no air moisture inside the housing as shown in Fig. 3.8b.
The Argon gas is inexpensive, non-toxic, colorless, and odorless. It can be used in all
climates and is favored in this situation. Several heat sinks are attached to the laser
housing in order to release the heat inside the housing such that the temperature can
be stabilized below the room temperature.

The relation between the resistance of the thermistor in kΩ and the stabilized tem-
perature of the sealed SDL in ◦C is shown in Fig. 3.9. This shows that the larger the
resistance of the temperature controller, the lower the stabilized temperature of the
SDL. The temperature of the diode laser is measured by first putting a temperature
sensor inside the housing, then the laser housing is filled with Argon gas. The SDL is
closed with plastic screws and rubber gaskets.

Several SDL locking points have been tested and are shown in Fig. 3.10, where the
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3.2. 934nm breadboard
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Figure 3.9.: The temperature of the sealed SDL in ◦C vs. the resistance of the thermistor in kΩ.
The fitted equation equation for the relation between the resistance (R) and the temperature
(T ) is T = 1/[A + B × ln(R/10) + C × ln(R/10)2 + D × ln(R/10)3] with A, B, C , and D being
values in the figure.

35
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9 10 11 12 13 14 15 16
0

100

200

300

400

500

58

56 52

80

77

73

68

61
72

100

97
92

89

82

118

116

155

In
je

ct
io

n
 P

o
w

er
 (
W

)

Temperature (°C)

Current operating point:
Resistance: 26k
Temperature: 9.15°C
Diode laser current: 340mA
Injection power: 310W
Output power: 155mW

(a)

9 10 11 12 13 14 15 16
0

100

200

300

400

500

135

132 127

163

160

155

149

141
159

189

186
182

176

168

215

212

340

In
je

ct
io

n
 P

o
w

er
 (
W

)

Temperature (°C)

Current operating point:
Resistance: 26k
Temperature: 9.15°C
Diode laser current: 340mA
Injection power: 310W
Output power: 155mW

(b)

Figure 3.10.: The injection power of the sealed SDL in µW vs. the temperature of the laser
diode in ◦C. (a) The bold font number beside each measurement point is the output power of
the SDL in units of mW measured at point A in Fig. 3.2. (b) The bold font number beside each
measurement point is the operating current of the SDL in units of mA.
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3.3. 467nm SHG breadboard

x̂-axis is the temperature of the laser diode in units of ◦C and the ŷ-axis is the min-
imum injection power at that temperature in units of µW. Each experimental point
corresponds to a measurement done by first setting and stabilizing the temperature,
then finding the minimum injection power. The bold font number beside each mea-
surement point in Fig. 3.10a is the output power of the SDL in units of mW measured
at point A in Fig. 3.2. In Fig. 3.10b, the bold font number is the operating current of
the diode laser in units of mA. The measurement points are sorted with different colors
and shapes, this shows a pattern that by increasing the resistance, i.e. lowering the
stabilized temperature, the minimum injection power decreases and a higher output
power can be achieved. Due to limited speed of heat transport inside the sealed box,
the SDL is not able to stabilize at a temperature below 9 ◦C. Together with the limited
amount of injection power of 550 µW, the typical operating values for the second SDL
is chosen as T = 9.15 ◦C (corresponding to a resistance of 26 kΩ for the temperature
controller) with a operating current of 340 mA. With a minimum injection optical
power of 310 µW, the SDL gives an optical output power of 155 mW.

3.3. 467nm SHG breadboard

Fig. 3.11 is the schematic drawing of the 467 nm breadboard. The enhanced 934 nm
laser light after the sealed SDL is guided into the SHG waveguide7 via two polariza-
tion maintaining (PM) fibers. The SHG waveguide is shown in Fig. 3.12. It frequency
doubles the 934 nm laser light into 467 nm. An optimal temperature for the waveguide
needs to be set to obtain maximal frequency doubling efficiency. To stabilize the tem-
perature of the waveguide, it is also connected to a Thorlabs TED200C temperature
controller. The typical temperature for maximal efficiency is ≈ 40 ◦C which corre-
sponds to 5.318 kΩ of resistance for the thermistor. The first PM fiber has a coupling
efficiency of 62 % and the fiber connector has a transmission efficiency of 86 %. To
increase the stability of the laser light, an additional intensity stabilization is acting on
a 200 MHz AOM. The stability reaches 5× 10−3 on minute time scale. A double-pass
AOM at 110 MHz is used for fine-tuning of the laser frequency to the resonance of the
octupole transition.

The output power of the waveguide vs. the 934 nm laser power input is shown in
Fig. 3.13. In the figure, the x̂-axis is the output of the SDL before coupling into the
waveguide fiber in units of mW, and the ŷ-axis is the output power of the waveguide in
units of mW. The red square points are measurements done with a single PM fiber of
62 % transmission rate. In the final setup, two fibers are used and are connected with
a fiber connector. Therefore, after taking into account the transmission rate of the

7NEL WH-0467-000-A-B-C
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3. Experimental setup

Figure 3.11.: Schematic setup of the 467 nm breadboard. A waveguide is implemented for
frequency doubling together with a AOM that shift the frequency of the laser by 200MHz and
a double-pass AOM of 110MHz. The 200MHz AOM is also used as the AOM for intensity
stabilization of the laser light. The frequency of the 110MHz double-pass AOM is varied for the
interrogation of the octupole transition. The typical optical power at the ion is 12mW.

Figure 3.12.: The SHG waveguide. It frequency doubles the 934 nm laser light into 467 nm. A
temperature of 40 ◦C for the waveguide needs to be set to obtain maximal frequency doubling
efficiency.
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3.3. 467nm SHG breadboard
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Figure 3.13.: The output power of the waveguide vs. the 934 nm laser power. The red dots
are the measured values and the red solid line is the fitted parabola with a fit function being
Y = 0.046X + 0.00112X 2.

fiber connector of 86 %, the 155 mW of output power of the sealed SDL corresponds to
134 mW in Fig. 3.13. The value 134 mW verifies the fitted equation in Fig. 3.13. With
an output power of the second SDL, the typical output power of the waveguide at
467 nm is 26.5 mW. After passing through the 200 MHz AOM with 88 % of −1st-order
transmission efficiency and the double-pass AOM with 66 %, the laser power at the
position of the ion is ≈ 12 mW.
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4. Octupole transition of a single 172Yb+ ion

At the beginning of this chapter, the octupole selection rules are discussed. They are
used to calculate the Rabi frequency and the π-pulse time of the octupole transition.
The laser beam properties and the alignment procedure of the 467 nm octupole laser
are shown, followed by the pulse sequence we will use to interrogate the octupole
transition.

4.1. Octupole selection rules

The 2S1/2 ↔ 2F7/2 transition probability is spread over 14 Zeeman components of
∆mJ = 0,±1,±2,±3 in the presence of an external magnetic field. To obtain a
maximal excitation probability to the desired Zeeman substates, the relation between
the direction of the magnetic field, the wave vector of the 467 nm octupole laser beam,
and the polarization of the laser need to be set such that the relative intensities of the
Zeeman components are maximized. The coordinate system is visualized in Fig. 4.1,
where θ is the angle between the wave vector of the laser light k and the magnetic field
B, φ is the angle that the polarization of the laser light e is tipped out of the plane of
k and B. The relation between the relative intensities, direction of the magnetic field,
the laser wave vector, and the polarization of the laser is given by [39]

I(mJ → m′J) ∝ R|mJ−m′J |

 7/2 3 1/2

m′J mJ −m′J −mJ

2

, (4.1)

with
R0 = 12 sin2 θ cos2 φ(1− 5 cos2 θ)2

R1 = cos2 θ cos2 φ(11− 15 cos2 θ)2 + sin2 ϕ(1− 5 cos2 θ)2

R2 = 10 sin2 θ cos2 ϕ(1− 3 cos2 θ)2 + 40 sin2 θ cos2 θ sin2 φ

R3 = 15 sin4 θ(cos2 θ cos2 φ+ sin2 φ)

(4.2)

being the components of R|mJ−m′J |: R0 is the relative amplitude of the |∆m| = 0
transition, and R1, R2, and R3 correspond to |∆m| = 1, |∆m| = 2, and |∆m| = 3
transitions, respectively. The bracket behind the relative amplitude is the Wigner-3j
symbol. The relative amplitudes of the R|mJ−m′J | components are calculated relative
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4. Octupole transition of a single 172Yb+ ion

Figure 4.1: Coordinate system for the
octupole selection rules. The magnetic
field B is in the ẑ direction. The wave
vector of the laser light k is in the x̂-ẑ
plane. The angle between k and ẑ is θ.
The polarization of the laser light e is
tipped out of x̂-ẑ plane by φ.

to θ and φ and are shown in Fig. 4.2 and 4.3.

The Wigner 3j-symbol and overall intensities of the components are shown in Table
4.1. Using this table and the orientation of the external magnetic field, the laser light,
and the polarization, one can calculate the Rabi frequency Ω via equation

Ω =

√
3Iλ30∆ν

2~c0π
√

2J ′ + 1

 J ′ J ′ − J J

m′J mJ −m′J −mJ

 (4.3)

m′J mJ (3j)2 Intensity

−1/2 1/2 3/56 3/56 R1

−1/2 −1/2 1/14 1/14 R0

−3/2 1/2 1/28 1/28 R2

−3/2 −1/2 5/56 5/56 R1

−5/2 1/2 1/56 1/56 R3

−5/2 −1/2 3/28 3/28 R2

−7/2 −1/2 1/8 1/8 R3

Table 4.1.: Wigner 3j-symbol for J ′ = 7/2 and J = 1/2 and the corresponding resulted line
strengths. m′J and mJ are the final state and initial state, respectively. The (3j)2 is the square
of the Wigner 3j-symbol and ”Intensity” is the fraction of the intensity of the laser light that is
used to drive the corresponding transition.
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4.1. Octupole selection rules

(a) 3D plot of R0 (b) Density plot of R0

(c) 3D plot of R1 (d) Density plot of R1

Figure 4.2.: The relative amplitude of R0 and R1 relative to θ and φ. (a)(b) 3D plot and density
plot of the relative amplitude of R0. (c)(d) 3D plot and density plot of the relative amplitude of
R1.
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4. Octupole transition of a single 172Yb+ ion

(a) 3D plot of R2 (b) Density plot of R2

(c) 3D plot of R3 (d) Density plot of R3

Figure 4.3.: The relative amplitude of R2 and R3 relative to θ and φ. (a)(b) 3D plot and density
plot of the relative amplitude of R2. (c)(d) 3D plot and density plot of the relative amplitude of
R3.
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4.2. Experimental parameters

Figure 4.4.: The geometry of the chip trap in the current setup. The 467 nm laser light
interrogates the ion at the center of the trap from the ŷ-axis. The distance from the ion
to the upper edge of the trap is ∆D = 25.5mm and the distance between the trap elec-
trodes is ∆X = 1mm. This results in a maximum possible divergence of the beam to be
tanα = λ/(πw) = ∆X/(2∆D) = 0.0196, where λ is the wavelength of the laser and w is the
waist radius at the position of the ion. Empirically, the aperture of the upper trap edges should
be ≈ 3 times the waist of the laser when it is at the upper edge in order to avoid stray light, i.e.
tanα′ = tanα/3.

4.2. Experimental parameters

4.2.1. Beam waist and pulse time

At the position of the ion, we have ≈ 12 mW of power at 467 nm laser light. Due to the
chip trap geometry of the current setup shown in Fig. 4.4, the minimum waist at the
ion is limited to 22.75µm in order to not hit the edge of the trap and causing stray light
with the laser beam. The lenses selected have focal lengths of −50 mm and +100 mm
with a relative distance of 109 mm as shown in Fig. 3.11. In the setup, the distance
between the last lens (the lens with a focal length of +100 mm) and the location of
the ion is 560 mm. The measured waist after the lens telescope is shown in Fig. 4.5,
where the horizontal and vertical waist are wh = 38 µm and wv = 24 µm, respectively.
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Figure 4.5.: Waist measurement of the 467 nm laser beam after the lens telescope. 560mm
is the position of the ion. The horizontal and vertical waist at the ion are wh = 38 µm and
wv = 24 µm.

The transition we want to interrogate is the |S,−1/2〉 ↔ |F ,−1/2〉 transition which
has the smallest Zeeman sensitivity of 0.56 MHz/G. With the measured beam waist,
the expected time for a π-pulse on the octupole transition is ≈ 54 ms. See Appendix
A.1 for calculation details.

4.2.2. Beam alignment procedure

We want to interrogate the |S,−1/2〉 ↔ |F ,−1/2〉 transition with a Zeeman sensitiv-
ity of 0.56 MHz/G. It is a |∆m| = 0 transition. For maximum coupling strength, the
parameter R0 in Eq. 4.2 needs to be maximized. The geometry of our setup is shown
in Fig. 4.6. The 467 nm laser beam will propagate along the ŷ-axis and is anti-parallel
to the 411 nm quadrupole laser. The magnetic field points along the H2 direction. So
the angle between the magnetic field and the wave vector of the laser beam is fixed at
θ = 90 ◦. Therefore, R0 is at maximum when the polarization of the laser is parallel
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Figure 4.6.: Geometry of the experimental chamber taken from [40]. The magnetic field for the
Zeeman splitting points along the H2 direction.

(φ = 0) or anti-parallel (φ = 180 ◦) to the direction of the magnetic field as shown in
Fig. 4.7.

In order to have the laser beam aligned properly, the quadrupole transition of the
172Yb+ is interrogated while alignment of the 467 nm laser beam is done. To obtain
the optimal alignment of the 467 nm laser beam, the induced AC-Stark shift on the
quadrupole carrier frequency is monitored. When the alignment is optimal, the in-
duced AC-Stark shift is at its maximum.

The interrogation of the quadrupole transition involves several lasers, which will be
briefly described with the relevant level scheme of 172Yb+, as shown in Fig. 4.8. The
370 nm laser is used in the process of Doppler cooling, optical pumping, and state
detection. Additional cooling can be done by implementing sideband cooling with the
411 nm and 1650 nm laser. The branching ratio is 0.83 [? ]. Due to the population
of metastable states during the cooling process, we have the repumpers 639 nm and
935 nm that close the cooling cycles. The 467 nm octupole transition is used for the
test of a possible LV and has a lifetime of ≈ 6 years [33].
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Figure 4.7.: The amplitude of the R|mJ−m′J | components relative to φ. The blue, yellow, green,
and orange lines are R0 to R3, respectively. The current setup sets the angle between the
magnetic field and the wave vector of the laser beam to be fixed at θ = 90 ◦. The transition to
be interrogated is |S ,−1/2〉 to |F ,−1/2〉. The transition is chosen because it has the smallest
Zeeman sensitivity of 0.56MHz/G. The maximum relative amplitude of R0 is achieved when the
polarization of the laser is parallel (φ = 0) or anti-parallel (φ = 180 ◦) to the direction of the
magnetic field.

The quadrupole transition we interrogate is the |S,−1/2〉 ↔ |D,−5/2〉 transition.
The experimental pulse sequence is shown in Fig. 4.9. With a trapped 172Yb+ ion, a
reference image is first taken to determine whether the ion is initially in the ground
state. Cycles with dark reference images are discarded. After the ion is being Doppler
cooled, it ion is optically pumped with a σ− circular polarized 370 nm laser beam to the
|S,−1/2〉. In the spectroscopy section, the frequency of a double-pass AOM which has
a center frequency of 200 MHz can be varied to tune the laser frequency on resonance
with the carrier frequency of the quadrupole transition. The sequence is followed by
detection of the population of the ion at the excited state and then repumping it back
to the ground state.

In Fig. 4.10, the quadrupole carrier transition frequency with the 467 nm laser being
turned on or off is measured. Each measurement point is the average of 100 pulse
sequence cycles. As the frequency of the 411 nm quadrupole laser is scanned with a
double-pass AOM, with the frequency gap between the two peaks in the figure being
850 Hz, a maximum AC-Stark shift of 1.7 kHz is obtained
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Figure 4.8.: Reduced level scheme of 172Yb+ from [41]. The 370 nm laser is used in the process
of Doppler cooling, optical pumping, and state detection. Additional cooling can be done by
implementing sideband cooling with the 411 nm and 1650 nm laser. Due to the population of
metastable states during the cooling process, we have the repumpers 639 nm and 935 nm that
close the cooling cycles. The 467 nm octupole transition is used for the test of a possible LV.

Figure 4.9.: The 411 nm quadrupole spectroscopy sequence. The 935 nm repumping laser is
always on, therefore it is not shown in the pulse sequence.
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Figure 4.10.: AC Stark shift of the quadrupole transition due to 467nm octupole laser. The
red and blue line correspond to the 467nm octupole laser being off and on. The frequency gap
between the two peaks is ≈850Hz. But since a double-pass AOM is implemented to vary the
frequency of the laser, the AC-Stark shift is 1.7 kHz.
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Figure 4.11.: The 467 nm octupole spectroscopy sequence. The 935 nm repumper laser is not
shown because it is always on during the pulse sequence.

4.2.3. Pulse sequence

To interrogate the octupole transition, a similar pulse sequence is used as for the
quadrupole transition. Here, the laser frequency is steered by means of a double-pass
AOM with a center frequency of 110 MHz as shown in Fig. 3.11. The frequency dif-
ference between the two Yb+ isotopes are shown in Fig. 3.1 to be 4711.5 MHz with
an uncertainty of 700 kHz. With the HF AOM that provides 2320.1 MHz of frequency
shift on the 934 nm and the 200 MHz of frequency shift provided by the AOM on the
467 nm breadboard, the frequency difference is reduced to 223.6 MHz with an uncer-
tainty of 700 kHz. With the double-pass AOM, the frequency at the AOM is half of
the value, being 111.4 MHz. To find the transition, we steer the frequency of the laser
with a range of ±500 kHz with respect to 111.4 MHz on the double-pass AOM. The
sequence is presented in Fig. 4.11.
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5. Summary and outlook

This thesis contributes toward the realization of the experiment to test LV with mul-
tiple 172Yb+ ions. We first discussed four different schemes of detecting a possible LV
signal. With the comparison of their sensitivities and the effect of magnetic field noise
to each scheme, we conclude with following the approach of scheme 4 which imple-
ments dynamical decoupling on the 2F7/2 manifold. With a chosen ion number of 10,
an interrogation time of 10 s, and an averaging time of 120 h, the sensitivity of the

experiment to the symmetry-breaking c′µν tensor element is ∆C
(2)
0 = 4.7× 10−22 which

would be a factor of 17 better than the current limit [25].

The laser needed for the interrogation of the 2S1/2 ↔ 2F7/2 octupole transition has
been set up. The laser power at the position of the ion is 12 mW. With this power and
the beam waist at the ion measured as wh = 38 µm and wv = 24 µm, the corresponding
π-pulse time is calculated to be ≈ 54 ms. The alignment of the octupole laser has been
done via monitoring the 467 nm laser induced AC-Stark shift on the quadrupole carrier
frequency.

The next step of the experiment is to find the resonance frequency of the octupole
transition. Therefore, we will make use of the rapid adiabatic passage [42] (RAP)
technique. It is a method to flip the atomic spin from the ground state to the excited
state while scanning the excitation laser in a certain frequency interval. The condition
it needs here are that the detuning of the scan range should be much larger than the
Rabi frequency and the detuning varies slow enough but faster with respect to the
atomic lifetime. After reducing the range of uncertainty with the RAP, a carrier fre-
quency scan will be done to precisely obtain the resonance frequency of the octupole
transition. Having found the resonance frequency, we will implement the magnetic
field coil for dynamical decoupling of the 2F7/2 manifold.

The longer the optical pulse time, the more likely that magnetic field noise will cause
the state of the ion to dephase. Therefore, to prevent the state from dephasing, we
need to reduce the pulse time (or increase the Rabi frequency) From Eq. 4.3, we see
that the Rabi frequency is proportional to the square root of the intensity. However,
due to the limited amount of laser power we have, the intensity of the 467 nm laser
cannot be increased further. Another way to reduce the π-pulse time is to increase
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Figure 5.1.: Measurement of the heating rate. The x̂-axis is the measurement number and the
ŷ-axis is the heating rate in units of phonon/second.

the coupling strength. For example, a huge fraction (60 %) of the intensities of 467 nm
laser are being distributed to the |∆m| = 2 transitions with the current setup. If the
angle θ can be set to 30 ◦, then the parameter R0 is maximized and the π-pulse time
is reduced to ≈ 40 ms. If we set θ = 0, then there will only be |∆m| = 1 transitions.
However, the π-pulse time for the |S,∓1/2〉 ↔ |F ,±1/2〉 (|∆m| = 1) is still only
≈ 54 ms.

We aim to use 10 ions for the test of LV. After the interrogation of the octupole
transition in a single Yb+ ion, the next step is to select the desired secular frequencies
for trapping 10 ions in an ion chain. The radial secular frequency of ωr = 2π×600 kHz
is chosen. At this frequency, the heating rate of the trap is ≈ 1 phonon/s as shown
in Fig. 5.1. With the low heating rate, we can extend the interrogation time of the
experiment without a dephasing of the ion states due to heating.

The number of ions trapped in a chain determines the upper limit of the axial
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Figure 5.2.: Beam profile of a 411 nm after passing through the phase plate. The red thick
bar on the beam profile is the cross-section chosen for the evaluation of the fluctuation of the
intensities.

secular frequency. To determine the maximum ωz, we compare ωz and ωr with the
given equation [43]

ωr
ωz

> 0.73N0.86, (5.1)

where N is the maximum number of ions that can be obtained while maintaining a
linear ion chain with a given ratio between the radial and axial secular frequency. The
maximum ωz with a radial secular frequency of ωr = 2π×600 kHz is ωz ≈ 2π×100 kHz.
With these secular frequencies, the ion chain length is calculated to be ≈ 75 µm.

The ions in the chain all need to be interrogated with the same Rabi frequency,
hence the intensities acting on the ions must be equal. First tests with a phase plate1

have been carried out. The advantage of a phase plate is that it changes the beam
profile of the incident beam from Gaussian into a flattop. An example of the beam
profile at 411 nm being flattened is shown in Fig. 5.2.

To see how much the intensities deviate on the flattop, a horizontal cross-section of
the image is exported and evaluated. The cross-section taken is the red bar shown in
Fig. 5.2. The exported data is shown in Fig. 5.3. The x̂-axis and ŷ-axis are the loca-
tion of the measurement points on the camera and the signal counts are proportional
to the intensity at the respective pixel of the camera. The pixel size is 10 µm. From
the data, the maximum count is 975 counts, the maximum difference between each

1TOPAG GTH-3.6-1.75
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Figure 5.3.: The exported data of the cross-section chosen in Fig. 5.2. The x̂-axis is the location
of the measurement points on the camera and the ŷ-axis is the signal counts. The distance
between each measurement point is ∆x = 10 µm.
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measurement points is 68. Therefore, the homogeneity of the phase plate is calculated
to be 7 % relative to the maximum intensity.

Since the ion chain length is ≈ 75 µm, we choose the flattop to be 90µm in the
axial direction (the ion chain principle axis) and focus the radial axis (vertical to the
principle axis) of the flattop to 30 µm. With these values, the calculated π-pulse time is
≈ 74 ms with a Fourier-limited linewidth of ≈ 12 Hz. The fluctuation of the AC-Stark
shift is estimated to be ≈ 8 Hz. See Appendix A.2 for calculation details. Assuming
that the center ion of the ion chain is interrogated perfectly, a maximum difference in
the AC-Stark shift of 8 Hz on other ions would cause a loss in intensity of more than
50 %. We conclude that this phase plate cannot be used for the LV experiment. If the
intensity fluctuation is 4 %, then the fluctuation of the AC-Stark shift is estimated to
be ≈ 5 Hz which would be within the Fourier linewidth. Hence, we need to implement
a phase plate with homogeneity of 2 % relative to the average intensity or a spatial
light modulator which can be programmed such that the intensity at each ion is the
same.
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A. Mathematica Code

A.1. Calculation of Rabi frequency and π-pulse time
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(*Natural constants*)
h = 6.626069 * 10-34; (*Planck's Constant in J.s*)
hbar = h / (2 * π);

μB = 9.27400899 * 10-24; (*Bohr Magneton*)
c0 = 299792458; (*Speed of Light in m/s*)

(*172Yb LV test parameter*)
P467 = 12 * 10-3; (*Power in W*)

λ = 467 * 10-9; (*wavelength in m*)

w01 = 38 * 10-6; (*waist radius in m*)

w02 = 24 * 10-6; (*waist radius in m*)
Intens = 2 * P467 / (π * w01 * w02);

lifetime = 1.3 × 108;(*lifetime of Yb octupole state in s*)
γ = 1 / (2 π * lifetime) ;(*Linewidth of the transition in Hz*)

(*Current geometry (octupole selection rules): B-field and wave vector is at θ=90°*)
θ = 90 °;
ϕ = 180 °;

R0 = 12 (Sin[θ])2 (Cos[ϕ])2 1 - 5 (Cos[θ])2
2
;

R1 = (Cos[θ])2 (Cos[ϕ])2 11 - 15 (Cos[θ])2
2
+ (Sin[ϕ])2 1 - 5 (Cos[θ])2

2
;

R2 = 10 (Sin[θ])2 (Cos[ϕ])2 1 - 3 (Cos[θ])2
2
+ 40 (Sin[θ])2 (Cos[θ])2 (Sin[ϕ])2;

R3 = 15 (Sin[θ])4 (Cos[θ])2 (Cos[ϕ])2 + (Sin[ϕ])2;

η =

1
14

* R0

3

28
* R2 +

1

28
* R2 +

1

14
* R0

;

(*Rabi frequency calculation*)
ν1 = Sqrt3 * Intens * η * ThreeJSymbol[{7 / 2, -1 / 2}, {3, 0}, {1 / 2, 1 / 2}]2 *

λ3 * γ / (2 * hbar * c0 * π) * Sqrt[2 * 7 / 2 + 1] / (2 * π);

(*Rabi frequency from -1/2 to -1/2 in Hz*)
pitime1 = 1 / (2 * ν1);

Print["R0=", R0]
Print["R1=", R1]
Print["R2=", R2]
Print["R3=", R3]
Print["Relative percentage of the intensity for -1/2 to -1/2 transition: ",
N[η] * 100, " %"]

Print["Theoretical Rabi frequency: 2π × ", ν1, " Hz"]

Print"Theoretical π-pulse time: ", 103 * pitime1, " ms"

Print["Theoretical Fourier-limited linewidth: ", 0.9 / pitime1, " Hz"]



R0=12

R1=0

R2=10

R3=0

Relative percentage of the intensity for -1/2 to -1/2 transition: 37.5 %

Theoretical Rabi frequency: 2π × 9.25307 Hz

Theoretical π-pulse time: 54.0361 ms

Theoretical Fourier-limited linewidth: 16.6555 Hz

2     pulse_time_Rabi.nb





A.2. Calculation of the AC-Stark shift and relative shift due to intensity fluctuation

A.2. Calculation of the AC-Stark shift and relative shift due to
intensity fluctuation
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(*Natural constants*)
h = 6.626069 * 10-34; (*Planck's Constant in J.s*)
hbar = h / (2 * π);

μB = 9.27400899 * 10-24; (*Bohr Magneton*)
c0 = 299792458; (*Speed of Light in m/s*)

(*Result of 171Yb clock*)
PREF = 10 × 10-3;(*Power in W*)

w00 = 20 × 10-6;(*Waist at the ion in m*)

IntensRef = 2 * PREF  π * w002;(*Intensity in Wm2*)

pulsemax = 0.335;(*Coherence time in s*)
pitime = 0.018;(*minimum π-pulse time in s*)
lightshift = 1090;(*AC-Stark shift in Hz*)
ν = 1 / (2 * pitime);(*Rabi frequency in Hz*)

ACStark = 0.0000267; (*in Hz（Wm2）, estimated from Nils' thesis*)

Print["Rabi frequency of 171Yb octupole: 2π x ", ν, " Hz"]

(*172Yb LV test parameter*)
P467 = 12 * 10-3; (*Power in W*)

λ = 467 * 10-9; (*wavelength in m*)

w01 = 90 * 10-6; (*units in m*)

w02 = 30 * 10-6; (*units in m*)
Intens = P467 / (w01 * w02);

lifetime = 1.3 × 108;(*lifetime of Yb octupole state in s*)
γ = 1 / (2 π * lifetime) ;(*Linewidth of the transition in Hz*)

(*Current geometry (octupole selection rules): B-field and wave vector is at θ=90°*)
θ = 90 °;
ϕ = 180 °;

R0 = 12 (Sin[θ])2 (Cos[ϕ])2 1 - 5 (Cos[θ])2
2
;

R1 = (Cos[θ])2 (Cos[ϕ])2 11 - 15 (Cos[θ])2
2
+ (Sin[ϕ])2 1 - 5 (Cos[θ])2

2
;

R2 = 10 (Sin[θ])2 (Cos[ϕ])2 1 - 3 (Cos[θ])2
2
+ 40 (Sin[θ])2 (Cos[θ])2 (Sin[ϕ])2;

R3 = 15 (Sin[θ])4 (Cos[θ])2 (Cos[ϕ])2 + (Sin[ϕ])2;

Print["R0=", R0]
Print["R1=", R1]
Print["R2=", R2]
Print["R3=", R3]

η =

1

14
* R0

3
28

* R2 +
1
28

* R2 +
1
14

* R0
;

Print["Relative percentage of the intensity for -1/2 to -1/2 transition: ",
N[η] * 100, " %"]

(*Rabi frequency calculation*)
ν1 = Sqrt3 * Intens * η * ThreeJSymbol[{7 / 2, -1 / 2}, {3, 0}, {1 / 2, 1 / 2}]2 *

λ *  *



ν =  * * η * [{ / - / } { } { / / }] *

λ3 * γ / (2 * hbar * c0 * π) * Sqrt[2 * 7 / 2 + 1] / (2 * π);

(*Rabi frequency from -1/2 to -1/2 in Hz*)
pitime1 = 1 / (2 * ν1);

Print["Theoretical Rabi frequency: 2π × ", ν1, " Hz"]

Print"Theoretical π-pulse time: ", 103 * pitime1, " ms"

relIntensity = 0.07;
resShift = N[Intens * relIntensity * ACStark];

Print["Theoretical Fourier-limited linewidth: ", 0.9 / pitime1, " Hz"]
Print["Fluctuation of AC-Stark shift: ", resShift,
" Hz, if laser power fluctuates by ", relIntensity * 100, " %"]

Rabi frequency of 171Yb octupole: 2π x 27.7778 Hz

R0=12

R1=0

R2=10

R3=0

Relative percentage of the intensity for -1/2 to -1/2 transition: 37.5 %

Theoretical Rabi frequency: 2π × 6.74002 Hz

Theoretical π-pulse time: 74.1837 ms

Theoretical Fourier-limited linewidth: 12.132 Hz

Fluctuation of AC-Stark shift: 8.30667 Hz, if laser power fluctuates by 7. %

2     





Acronyms

LS Lorentz symmetry

LV Lorentz violation

SME Standard Model Extension

UFF Universality of Free Fall

LPI Local Position Invariance

LLI Local Lorentz Invariance

RF Radio-freuquency

HF High freuquency

AOM Acousto-optic modulator

SHG Second-harmonic-generation

ECDL External-cavity diode laser

ULE Ultra-low-expansion

SDL Slave diode laser

OSA Optica spectrum analyzer

PM Polarization maintaining

PMT Photomultiplier tube

SNR Signal-to-noise ratio

ROI Region of interest
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